Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Physikalisch-chemische Studien an Eisensalzen

Just, Gerhard

Leipzig, 1908

C. Kinetische Untersuchungen bei verschiedenen Temperaturen

urn:nbn:de:bsz:31-270660

Visual Library

Donnan und Le Rossignol erwähnen in ihrer Arbeit die Formel von Noyes und zeigen, dass deren Anwendung auf ihre Resultate für die Ordnung des Ferricyankaliums etwa den Wert 1.2 ergibt. Wie oben gezeigt, gelangt man zu der Formel von Noyes durch Integration des Ausdrucks $-\frac{dc}{dt} = Kc^m$, wobei man K als konstant und unabhängig von der Anfangskonzentration annimmt. Da nun Donnan und Le Rossignol auf Grund der Konstanz ihrer K_2 -Werte unbedingt an den Verlauf zweiter Ordnung glauben, ihre bezüglichen Konstanten K2 aber die verlangte Unabhängigkeit von der Anfangskonzentration nicht besitzen, so halten sie sich zur Anwendung jener Methode in ihrem Falle nicht berechtigt. Indem wir im folgenden nachweisen, dass das van 't Hoffsche Kriterium auf die erste Ordnung bei allen Temperaturen führt, während das Kriterium der Konstanz der zweiten Ordnung nur bei 34.7° befriedigt ist, beweisen wir, dass die Überlegenheit, welche das van 't Hoffsche Kriterium im allgemeinen hat, auch im vorliegenden speziellen Falle, gilt und die daraus abgeleitete erste Ordnung hinsichtlich des Ferricyankaliumsalzes die richtige ist.

Eine Abhängigkeit der Konstanten K_1 von der Anfangskonzentration besteht nicht.

C. Kinetische Untersuchungen bei verschiedenen Temperaturen.

Zunächst wurde eine Reihe von kinetischen Versuchen bei 25° angestellt, deren Resultate in den folgenden Tabellen 49-54 enthalten sind.

	Tabe	elle 49.	
	Temper	atur 25.0°.	
	$c = \frac{1}{2}$ -norm	$c_1 = 1/2 - norn$	1.
с	t 120	<i>K</i> .	K.
15.0213	5.83	0.0159	0.00101
13.5631	13.26	0.0147	0.00098
12.1048	22.23	0.0139	0.00099
10.6467	33.18	0.0130	0.00100
9.1885	47.76	0.0122	0.00101
7.7303	67.26	0.0113	0.00102
			Mittel: 0.00100
	Tabe	elle 50.	
15.0213	5.95	0.0156	0.00099
13.5631	13.38	0.0146	0.00098
12.1048	22.40	0.0138	0.00098
10.6467	33.07	0.0132	0.00101
9.1885	47.74	0.0122	0.00101
7.7303	66.09	0.0115	0.00104
6.2721	91.42	0.0106	0.00108
			Mittel: 0.00101
			G

wender in

eit durch de

i lassen. To

ie mi mi

ı bei smile e, die skibi

n Beispiele d e vollkomer

nd mach de l miliaren Tehr milit sich di l er ist lie i

ags va del r Ordani, i Jen Techni i

Hoff, Gene

82 -

	Tabel	le 51.	
	Tempera	tur 25.0°.	
	$c_a = \frac{1}{40}$ -norm.	$c_b = \frac{1}{2}$ -norm.	e the pression of the Links
С	t	A1	K _g
7.5106	6.58	0.0141	0.00179
6.7815	14.81	0.0132	0.00176
6.0524	24.89	0.0124	0.00176
5.3233	36.97	0.0118	0.00180
4.5942	51.95	0.0112	0.00185
3.8651	71.32	0.0106	0.00193
3.1360	97.99	0.0099	0.00202
	in about all man		Mittel: 0.00184
	Tabe.	lle 52.	
	$c_a = 1/40$ -norm.	$c_b = 1/2 - \text{norm}$	A Real Property and
7.5106	6.53	0.0142	0.00180
6.7815	14.76	0.0132	0.00177
6.0524	24.73	0.0125	0.00177
5.3233	36.71	0.0119	0.00181
4.5942	51.58	0.0113	0.00187
3.8651	70.83	0.0107	0.00194
3.1360	97.63	0.0099	0.00202
	der max for unit	nueno a ren se	Mittel: 0.00185
	Tabe	lle 53.	Mittel: 0.00185
	Tabe $c_a = \frac{1}{80}$ -norm.	lle 53. $c_b = \frac{1}{2}$ -norm	Mittel: 0-00185
3.7564	$c_a = \frac{1}{800} - \text{norm}.$	lle 53. $c_b = \frac{1}{2} - \text{norm}$ 0.0139	Mittel: 0-00185 0-00356
3-7564 3-3929	Tabe $c_a = \frac{1}{80}$ -norm. 6.60 15.40	lle 53. $c_b = \frac{1}{2}-norm$ 0.0139 0.0126	Mittel: 0-00185 0-00356 0-00338
3-7564 3-3929 3-0294	Tabe. $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90	lle 53. $c_b = \frac{1}{2}$ -norm 0.0139 0.0126 0.0119	Mittel: 0-00185 0-00356 0-00338 0-00337
3-7564 3-3929 3-0294 2-6659	Tabe. $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60	lle 53. $c_b = \frac{1}{2} - norm$ 0.0139 0.0126 0.0119 0.0113	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343
3-7564 3-3929 3-0294 2-6659 2-3024	Tabe. $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73	lle 53. $c_b = \frac{1}{2} - norm$ 0.0139 0.0126 0.0119 0.0113 0.0106	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350
3-7564 3-3929 3-0294 2-6659 2-3024 1-9389	Tabe. $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68	lle 53. $c_b = \frac{1}{2} - norm$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe: $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68 104.28	lle 53. $c_b = \frac{1}{e} - norm$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-008377
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe: $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68 104.28	lle 53. $c_b = \frac{1}{e} \cdot \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe. $c_a = \frac{1}{80}$ -norm. 6:60 15:40 25:90 38:60 54:73 75:68 104:28 Tabe.	lle 53. $c_b = \frac{1}{e} - norm$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54.	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-08377 Mittel: 0-00362
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe: $c_a = \frac{1}{s_0}$ -norm. 6:60 15:40 25:90 38:60 54:73 75:68 104:28 Tabe: $c_a = \frac{1}{s_0}$ -norm.	lle 53. $c_b = \frac{1}{a} \cdot \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{a} \cdot \text{norm}$	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564	Tabe: $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68 104.28 Tabe $c_a = \frac{1}{80}$ -norm 6.58	lle 53. $c_b = \frac{1}{2} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352 1. 0-00357
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929	Tabe: $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68 104.28 Tabe $c_a = \frac{1}{80}$ -norm. 6.58 15.43	lle 53. $c_b = \frac{1}{2} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00358
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294	Tabe: $c_a = \frac{1}{80}$ -norm. 6.60 15.40 25.90 38.60 54.73 75.68 104.28 Tabe $c_a = \frac{1}{80}$ -norm. 6.58 15.43 26.06	lle 53. $c_b = \frac{1}{2} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00338 0-00335
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294 2.6659	Tabe: $c_a = \frac{1}{80}$ -norm. 6:60 15:40 25:90 38:60 54:73 75:68 104:28 Tabe: $c_a = \frac{1}{80}$ -norm. 6:58 15:43 26:06 38:83	lle 53. $c_b = \frac{1}{e} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118 0.0112	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00335 0-00335 0-00335
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294 2.6659 2.3024	Tabe: $c_a = \frac{1}{80}$ -norm. 6:60 15:40 25:90 38:60 54:73 75:68 104:28 Tabe: $c_a = \frac{1}{80}$ -norm. 6:58 15:43 26:06 38:83 55:05	lle 53. $c_b = \frac{1}{e} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118 0.0112 0.0106	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00355 0-00335 0-00341 0-00341 0-00341
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294 2.6659 2.3024 1.9389	Tabe: $c_a = \frac{1}{80}$ -norm. 6-60 15-40 25-90 38-60 54-73 75-68 104-28 Tabe: $c_a = \frac{1}{80}$ -norm. 6-58 15-43 26-06 38-83 55-05 76-22	lle 53. $c_b = \frac{1}{e} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118 0.0112 0.0106 0.0098	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00335 0-00341 0-00348 0-00358
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe: $c_a = \frac{1}{80}$ -norm. 6-60 15-40 25-90 38-60 54-73 75-68 104-28 Tabe: $c_a = \frac{1}{80}$ -norm. 6-58 15-43 26-06 38-83 55-05 76-22 105-25	lle 53. $c_b = \frac{1}{e} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118 0.0112 0.0112 0.0106 0.0098 0.0091	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-08377 Mittel: 0-00352 1. 0-00357 0-00335 0-00358 0-00358 0-00358 0-00358 0-00358
3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754 3.7564 3.3929 3.0294 2.6659 2.3024 1.9389 1.5754	Tabe: $c_a = \frac{1}{80}$ -norm. 6-60 15-40 25-90 38-60 54-73 75-68 104-28 Tabe: $c_a = \frac{1}{80}$ -norm. 6-58 15-43 26-06 38-83 55-05 76-22 105-25	lle 53. $c_b = \frac{1}{e} - \text{norm}$ 0.0139 0.0126 0.0119 0.0113 0.0106 0.0100 0.0092 lle 54. $c_b = \frac{1}{2} - \text{norm}$ 0.0140 0.0126 0.0118 0.0112 0.0118 0.0112 0.0112 0.0106 0.0098 0.0091	Mittel: 0-00185 0-00356 0-00338 0-00337 0-00343 0-00350 0-00361 0-00361 0-00367 Mittel: 0-00352 1. 0-00357 0-00358 0-00358 0-00358 0-00358 0-00358 0-00372 Mittel: 0-00550

Das Gesamtbild hat sich gegenüber demjenigen bei 34.7° etwas verschoben. Der Temperatureinfluss äussert sich darin, dass die Mittelwerte von K_2 bei dieser Erniedrigung um annähernd 10° auf etwa den 1.5. bis 1.6. Teil gesunken sind. Die Reihe der K_1 -Werte ist ebenfalls 6-781 6-055 5-325 4-594 3-865 3-134

7.51

7-73 6-271

8-75 8-39 3-02

2.66 2.30 1.93 1.57 ungefähr um den gleichen Betrag heruntergerückt, so dass die eigentümliche Abhängigkeit von K_2 von der Anfangskonzentration, die Unabhängigkeit dagegen bei K_1 bestehen bleibt. Dabei tritt aber bei K_2 das Minimum früher ein, und das nachherige Ansteigen wird entschieden stärker, die Konstanz also eine weniger gute. Dementsprechend rücken die Werte von K_1 mehr zusammen. Vergleichen wir z. B. die analogen Versuche 49 und 24. In den ersten sechs Reaktionsstufen ändert sich K_1 im ersten Falle bei 34.7° von 0.0259 auf 0.0172, d. h. rund um $34°|_0$ des Anfangswertes, im zweiten Versuch dagegen bei 25° von 0.0156 auf 0.0115, also nur etwa um 26.4°|_0 des ersten Wertes. Es stellt sich hier die Frage, ob weitere Temperaturerniedrigung eine weitere Verschiebung im gleichen Sinne zur Folge hat. Es folgen deshalb jetzt Versuche bei 15°.

83

	Tabel	le 55.		
	Tempera	tur 15.0°.		
	$c_a = \frac{1}{20}$ -norm.	$c_b = \frac{1}{2}$ -norm.		
C		K ₁		K_2
15.0213	10.08	0.00918		0.000584
13.5631	22.68	0.00859		0.000579
12.1048	37.68	0.00818		0.000582
10.6467	55.28	0.00789		0.000601
9.1885	77.18	0.00758		0.000624
7.7303	104.71	0.00746		0.000657
6.2721	141.26	0.00684		0.000697
			Mittel	0.000618
	Tabel	lle 56.		
	$c_a \implies 1/_{40}$ -norm.	$c_b = 1/2$ -norm.		
7.5106	11.23	0.00817		0.00104
6.7815	25.26	0.00771		0.00103
6.0524	41.59	0.00742		0.00105
5.3233	60.72	0.00720		0.00109
4.5942	84.69	0.00690		0.00114
3.8651	113.57	0.00667		0.00121
3.1360	152.89	0.00632		0.00129
			Mittel	0.00112
	Tabe.	lle 57.		
	$c_a = \frac{1}{80}$ -norm.	$c_b = 1/2$ -norm.		
3.7564	11.93	0.00770		0.00198
3.3929	26.68	0.00728		0.00197
3.0294	43.91	0.00700		0.00201
2.6659	64.71	0.00673		0.00207
2.3024	90.04	0.00646		0.00216
1.9389	121.94	0.00618		0.00227
1.5754	164.36	0.00585		0.00247
Licitianten			Mittel	0.00213
				6*

BLB BADISCHE LANDESBIBLIOTHEK

脑

10

40

Mill (Mill (

Mittal: 1483

In der Tat kommen die bei 25° erkannten Veränderungen hier bei 15° noch in weit stärkerm Masse zum Ausdruck. Die Werte von K_2 sind jetzt überhaupt nicht mehr als Konstante anzusprechen, während diejenigen von K_1 noch mehr zusammenrücken. Noch deutlicher werden die Veränderungen bei den folgenden Versuchen bei 6° und 0° . Bei 6° wurde in einem durch Wasserzufluss gekühlten Thermostaten gearbeitet, bei 0° stand das Reaktionsgefäss in einem mit fein verteiltem Eis gefüllten Behälter. Da manche der Versuche mehrere Tage in Anspruch nahmen, so musste dieser Behälter gegen Wärmeabgabe geschützt, und ausserdem das Eis öfters erneuert werden.

84

Tabelle 58.

Temperatur 6.0°.

	$c_{-} = \frac{1}{200}$ -norm.	$c_{h} = \frac{1}{2}$ -norm.
	a 120	o '= F
15.0213	16.82	0.00550
13-5631	37.09	0.00525
12.1048	61.04	0.00504
10.6467	89.27	0.00491
9.1885	122.94	0.00474
7.7303	164.36	· 0.00461
	Tabel	le 59
	Temper	atur 0º.
	$c_a = \frac{1}{20}$ -norm.	$c_b = \frac{1}{2}$ -norm.
15.0412	24.33	0.00375
13-6028	52.75	0.00364
2.1644	85-62	0.00355
0.7200	122.09	0.00352
9.2876	163.92	0.00350

Tabelle 60.

0.00343

0.00334

216.10

283.37

7.8492

6.5108

	$c_a = \frac{1}{40}$ -norm.	$c_b = \frac{1}{2}$ -norm.	
7.5206	25.80	0.00355	0.00045
6-8014	54.72	0.00350	0.000469
6.0822	87.97	0.00345	0.000489
5-3630	127.55	0.00336	0.000510
1.6438	173.72	0.00329	0.000541
3.9246	230.47	0.00322	0.000579
3.2054	300.55	0.00311	0.000634

34027 3.0441 2.6855 2.5269 1.9683

> 7.5206 6-8014 6-0822 5-3630 4-6438

 K_2

0.000350

0.000354

0.000359

0.000372

0.000400

0.000418

0.000238

0.000243

0.000251

0.000266

0.000286

0.000309

0.000336

15206 6-8014 6-0822 5-9630 4-6438

\$-9246

Diese V duss noch illen Vers Instante ate von Kliger als singen läs stalls is i das Ferri then erste aperature adwelche B Reaktion ich der ers it ist ka n der Ani at von K

BLB BADISCHE LANDESBIBLIOTHEK

	_	85 —	
	Tabe	elle 61.	
	Temp	eratur 0º.	
	$c_{\alpha} = \frac{1}{80}$ -norm	$e_1 = \frac{1}{2} - norm.$	
С	t	<i>K</i> .	K
3.7613	27.83	0.00327	0.000832
3.4027	61-58	0.00311	0.000831
3.0441	99.33	0.00304	0.000864
2.6855	143.63	0.00297	0.000903
2.3269	195.76	0.00290	0.000955
1.9683	219.23	0.00285	0.001210
		an ocumestojam	
	Tabe	elle 62.	
	$c_a = 1/40$ -norm	$c_b = \frac{3}{s-norm}.$	
7.5206	62.50	0.00146	0.000186
6.8014	134.17	0.00143	0.000191
6.0822	217.42	0.00140	0.000198
5.3630	315.84	0.00136	0.000206
4.6438	429.76	0.00135	0.000219
	TT 1	11	
	Tabe	elle 63.	
	$c_a = 1/_{40}$ -norm	$c_b = 1/4$ -norm.	
7.5206	195-58	0.000477	0.0000596
6.8014	419.58	0.000458	0.0000612
6.0822	684.16	0.000444	0.0000629
5.3630	993.24	0.000433	0.0000655
4.6438	1369-32	0.000419	0.0000686
3.9246	1839.74	0.000403	0.0000725

Diese Versuche bei 0° bringen den bisher erkannten Temperatureinfluss noch in erhöhtem Masse zur Geltung. Die Werte für K_2 steigen in allen Versuchen fast regelmässig an, das Minimum ist verschwunden; als Konstanten sind dieselben in keiner Weise mehr zu betrachten. Die Werte von K_1 fallen auch hier immer noch etwas, wenn auch bedeutend weniger als bei den höhern Temperaturen. Wegen des Gefrierens der Lösungen lässt sich die Temperaturerniedrigung nicht weiter treiben. Jedenfalls ist der Schluss berechtigt, dass der Reaktionsverlauf in bezug auf das Ferricyankalium, was das Kriterium der Konstanz betrifft, einem solchen erster Ordnung sehr nahe kommt, und dass dieser bei tiefen Temperaturen gut zu beobachtende Lauf bei höhern Temperaturen durch irgendwelche Störungen beeinflusst sein muss. Die Auffassung, dass die Reaktion zwar bei tiefern Temperaturen für das Ferricyankalium nach der ersten, bei höhern aber nach der zweiten Ordnung sich abspielt, ist kaum durchführbar; dabei bliebe einerseits die Abhängigkeit von der Anfangskonzentration ungeklärt, und anderseits wäre die Konstanz von K_2 ja nicht etwa in einem grössern Temperaturgebiete, sondern

erinderan k. Die Ve

Noch isti nehen bi i

vern mit fan 1 mehren ju 1 farmeni ok

福福張城福福

488

WE

極極

施

ME

福

個個

MB

100

ME

1416

gerade nur in der Nähe der einen zufällig von Donnan und Le Rossignol gewählten Temperatur von 35° zu beobachten. Während, wie wir gesehen haben, Temperaturerniedrigung die Werte von K_2 zum Steigen bringt, zeigen sie bei höherer Temperatur einen deutlich fallenden Gang. Ein Versuch bei 45° (Tabelle 64) lässt dies erkennen. Allerdings sind nun bei 45° und noch mehr bei höhern Temperaturen die Versuche schwer ausführbar, da das Auftreten der Jodfärbung immer mehr unscharf wird und oberhalb 60° vollständig ausbleibt. Jedenfalls wird hier die Jodstärkereaktion unempfindlich, dadurch kommt der rückläufige Vorgang in erhöhtem Masse zur Geltung und stört das Reaktionsbild.

86 -

Tabelle 64.

Temperatur 45.0°.

	$c_a = \frac{1}{40}$ -norm. $c_b = \frac{3}{8}$ -norm.	
с	t	K_{2}
7.5206	5.88	0.00198
6.8014	13.92	0.00184
6.0822	24.07	0.00179

Wir finden also, dass das Kriterium der Konstanz für die Ordnung der Reaktion bezüglich des Ferricyankaliums bei tiefen Temperaturen mehr auf den Wert 1 als auf den Wert 2 führt. Benutzen wir aber aus den früher erläuterten Gründen die überlegene Formel von Noyes, so erhalten wir für das Ferricyankalium bei allen Temperaturen die erste Ordnung, wie folgende Tabelle zeigt.

				Tabelle	65.		
Temperatur	Nı V	der der	ern che	Anfa konzen ca1	ngs- tration c_{a_2}	Umgesetzter Bruch- teil der Anfangs- konzentration	m
34.7 °	23	und	25	1/20-n.	1/40-n.	1/3	1.20
34.7 °	24	>>	26	1/20-n.	1/40-n.	1/2	1.15
34.7 °	24	23	29	1/20-n.	1/80-n.	1/2	1.11
25.0°	49	77	51	1/20-n.	1/40-n.	1/2	1.09
25.0°	49	"	54	1/20-n.	1/80-n.	1/2	1.10
15·0°	55	22	57	1/20-n.	1/80-n.	1/2	1.12
0.0 °	59	>>	60	1/20-n.	1/40-n.	1/2	1.09
0.0 0	59	22	61	1/20-n.	1/80-n.	3/g	1.12

Danach erscheint uns eine andere Auffassung als die der ersten Ordnung für das Ferricyankalium eine Berechtigung nicht mehr zu besitzen.

Analoge Versuche sind statt mit Jodkalium mit Jodnatrium ausgeführt worden und in den folgenden Tabellen enthalten.

Baden-Württemberg

14

13

12 12

10

9

9

8

11

15

1

n Donna n obacitiza. To die Wete n itar einen fei ist tis day hiben lapa n der John utig ushin ch, dadari i Geltung al

3.7496

3.3794

3.0092

2.6389

2.2687

1.8985

in.

645 NB NB Lonstans fir b bei tide la

ihrt. Beste rene Forné a ales less

ngesetzter brå eil der krinp konzenträs ž,

•

ang si bi htigang tit

日前海 entitie

Tabelle	66.
Temperatur	34.7

87 -

	$c_a = \frac{1}{20}$ -norm.	$c_b = 1/2$ -norm.	
С	t	K ₁	K_{2}
15.7412	2.72	0.0169	0.001046
15.0029	6.08	0.0154	0.000987
14.2646	10.12	0.0143 🔎	0.000925
13.5263	14.37	0.0137	0.000922
12.7880	18.92	0.0134	0.000926
12.0497	24.10	0.0130	0.000926
11.3114	30.02	0.0125	0.000924
10.5731	36.45	0.0122	0.000930
9.8348	42.98	0.0120	0.000954
9.0965	52.57	0.0113	0.000937
8.3582	62.50	0.0109	0.000944
	(T) 1 1	1 07	
	Tabel	le 67.	
15.7412	2.70	0.0170	0.001054
15.0029	6.17	0.0152	0.000968
14.2646	10.10	0.0143	0.000927
13.5263	14.37	0.0137	0.000922
12.7880	19.08	0.0133	0.000918
12.0497	24.37	0.0128	0.000915
11.3114	30.28	0.0124	0.000916
10.5731	36-92	0.0120	0.000918
9.8348	44.53	0.0116	0.000921

Tabelle 68.

	$c_a = \frac{1}{40}$ -norm.	$c_b = \frac{1}{2}$ -norm.	
7.5015	7.58	0.0124	0.00158
6.7632	16.37	0.0121	0.00162
6.0249	28.52	0.0110	0.00156
5.2866	43.67	0.0102	0.00155
4.5483	62.87	0.0095	0.00157

Tabelle 69.

$c_a = \frac{1}{80} - norm$	$c_b = \frac{1}{2}$ -norm,	
5.48	0.0172	0.00437
15.83	0.0125	0.00336
28.75	0.0109	0.00312
45.08	0.0099	0.00302
66.25	0.0090	0.00299
95.67	0.0081	0.00297

88 -

Tabelle 70.

Temperatur 34.7°.

	$c_a = \frac{1}{80}$ -norm.		
с	t	K ₁	K_{e}
3.7496	5.75	0.0164	0.00417
3.3794	16.22	0.0122	0.00328
3.0092	29.33	0.0107	0.00305
2.6389	45.58	0.0098	0.00299
2.2687	66.92	0.0089	0.00296
1.8985	96.08	0.0081	0.00296

Tabelle 71.

	$c_a = \frac{1}{20}$ -norm.	$c_b = \frac{3}{3}$ -norm.	
15.2898	9.65	0.0078	0.000489
14.1001	22.68	0.0069	0.000452
12.9104	37.97	0.0064	0.000442
11.7207	56.17	0.0061	0.000439
10.5310	78.48	0.0057	0.000435

Tabelle 72.

Temperatur 34.7°. $c_a = \frac{1}{40}$ -norm. $c_b = \frac{3}{8}$ -norm. 7.8695 10.33 0.0044 7.4993 23.08 0.0041 7.1291 37.13 0.00396.7588 52.42 0.0038 6.3886 69.83 0.0036 Tabelle 73.

7.8695 10.30 0.00450.0005547.4993 23.28 0.0040 0.0005157.129137.25 0.0039 0.000508 6.7588 52.73 0.0038 0.0005046.3886 69.92 0.0037 0.000503

Tabelle 74.

3

33

2

	$c_a = 1/_{so}$ -norm,	$c_h = \frac{3}{s-norm}$.	
7496	25.22	0.0037	0.000950
3794	59.33	0.0033	0.000895
6389	101.58	0.0031	0.000882
0000	104-33	0.0029	0.000882

c 15-261 14-051 12-841 11-635 10-424 9-211 8-005 6-794

> 15-268 14-058 12-847 11-637

5.584

Temperatur

0.000553

0.000519

0.000509

0.000507

0.000504

847° 847° 847° Das all stepricht i inden von I, steigen, Aber ni diese V feichen So ndem Seit ui Jodnatu lise Verä kelerte Be

— 89 —				
Taballa 75				
	Tam	oene (b.		
	1 em]	peratur 0°.		
internation in a	$c_a = -/20^{-110}$	m. $c_b = \frac{s}{s}$ -norm.	thank samilatho	
15.9689	07.10	K ₁	K_{2}	
14.0582	149.49	0.00114	0.0000717	
19.0477	142.42	0.00111	0.0000734	
12.04((221.97	0.00112	0.0000773	
10.4905	315.03	0.00110	0.0000802	
10.4269	421.92	0.00108	0.0000835	
9.2159	543.42	0.00107	0.0000880	
8.0053	688.47	0.00105	0.0000933	
6.7947	866.33	0.00102	0.0001000	
5.5841	1092.08	0.00099	0.0001084	
	Ta	belle 76.		
15.2689	68.17	0.00112	0.0000706	
14.0583	148.03	0.00107	0.0000706	
12.8477	235.08	0.00106	0.0000730	
11.6371	332.33	0.00105	0.0000760	
Taballa 77				
Temperatur 34.7°.				
c	t ((1/2) mit KJ	t(1/) mit NaT	
$\frac{1}{1} - n0$ m 3		39.99	9.99 63.01	
1/ J		44.02	.09 76.09	
1/ 1/ 1/		45.90	89.82	
780 " Tabelle 78		02.09		
Ordnung der Reaktion nach Noves-van 't Hoff				
Nummern Anfangs- Umgesetzter Bruch-				

Temperatur	Nummern der	Ankonze	fangs- entration	Umgesetzter Bruch- teil der Anfangs-	m
and the second second	Versuche	Ca1	Ca2	konzentration	
34.7 °	66 und 68	1/20-n.	1/40-n.	1/8	1.26
34.7 °	60 " 69	1/20-n.	1/80-n.	1/3	1.15
34.7 °	68 ,, 69	1/40-n.	1/80-n.	1/8	1.03
D. 11	· D'1	Jaco mare	It. W.	he with T. Justin	

Das allgemeine Bild, das uns die Versuche mit Jodnatrium geben, entspricht ganz dem bei den Versuchen mit Jodkalium gewonnenen. Auch hier bei hohen Temperaturen die bessere Konstanz von K_2 und Sinken von K_1 , auch hier der Einfluss der Temperaturerniedrigung, der K_2 steigen, K_1 bei 0° aber nahe konstant werden lässt.

Aber wenn wir aus den mit Jodnatrium angestellten Versuchen auf diese Weise hinsichtlich der Ordnung des Ferricyansalzes zu dem gleichen Schlusse geführt werden, wie früher, so tritt uns auf der andern Seite ein überraschendes Ergebnis insofern entgegen, als alle mit Jodnatrium ausgeführten Versuche wesentlich langsamer verlaufen. Diese Veränderung der Geschwindigkeit kann vielleicht auf eine veränderte Beschaffenheit des hypothetischen Zwischenprodukts zurück-

田極

新加加市

相応

NE

相臣

105

NE

ME

geführt werden. Aber man kann in ihr auch einen Hinweis darauf erblicken, dass nicht die Ferricyanionen, die ja durch die Vertauschung des Jodkaliums durch Jodnatrium nicht nennenswert beeinflusst werden, sondern das undissociierte Ferricyansalz Träger des Umsatzes ist.

Auch mit Ersatz des Ferricyankaliums durch Ferricyannatrium wurde noch eine Gruppe von Messungen ausgeführt. Die einzelnen Versuche sollen hier nicht wiedergegeben werden, da keine wesentlich neuen Gesichtspunkte dadurch gewonnen wurden. Das Ferricyannatrium wurde, da es nicht in genügender Reinheit im Handel zu erhalten war. durch Einleiten von Chlor in Ferrocyannatriumlösung hergestellt. Ein sehr häufiges Umkristallisieren des gewonnenen Produkts ist notwendig, um es von dem bei der Darstellung gleichzeitig entstehenden Chlornatrium zu trennen. Die kinetischen Versuche hatten folgendes Er-Vergleicht man zwei Messungen miteinander, in denen bei gebnis. gleichen Konzentrationen ein bestimmtes Jodsalz einmal mit Ferricyankalium, das anderemal mit Ferricyannatrium reagiert, so ist fast immer die Reaktionsgeschwindigkeit im letztern Falle, also beim Natriumsalz. geringer, indes ist diese Verzögerung viel zu unbedeutend, um daraus Folgerungen über den tatsächlich reagierenden Bestandteil des Ferricyansalzes aufzubauen; bei der Geringfügigkeit der beobachteten Wirkung wären solche nur bei genauester Kenntnis der Dissociationsverhältnisse der vier Salze gestattet. Weiter versteht es sich von selbst, dass wenn wir zwei Versuche vergleichen, bei denen in einem die beiden Natriumsalze, im andern die beiden Kaliumsalze reagieren, die Geschwindigkeit in analoger Weise wie bei den früher angeführten Versuchen, in denen allein das Jodkalium durch Jodnatrium ersetzt war, bei den Natriumsalzen eine ganz bedeutend geringere ist.

Aus den im vorstehenden Kapitel mitgeteilten Versuchen geht hervor, dass die Reaktion hinsichtlich des Ferricyansalzes erster Ordnung ist.

V. Gründe für die Beteiligung des undissociierten Ferricyankaliums und für die zweite Ordnung der Reaktion in bezug auf Jodkalium.

Das wesentliche Moment, welches durch die im folgenden mitgeteilten weitern Versuche für die Erklärung der Reaktion beigebracht wird, lässt sich dahin kennzeichnen, dass die Geschwindigkeit der Reaktion sich annähernd verdoppelt, wenn der Gehalt an Kaliumionen in der Lösung durch Zusatz eines indifferenten Kaliumsalzes annähernd verdoppelt wird. Während die Geschwindigkeit derselben Reaktion auf

Wert 1