Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Methodisch geordnete Aufgabensammlung

Bardey, Ernst Leipzig, 1879

XIII. Wurzeln oder irrationale Größen

urn:nbn:de:bsz:31-269430

72.
$$(3x + x^{-1} + 2) (3x + x^{-1} - 2)$$

73.
$$(8x^2 - 5x^{-2} + 3) (3x^2 + 4x^{-2} - 5)$$

74.
$$(9x^2 + 2x^{-2} + 6) (9x^2 + 2x^{-2} - 6)$$

75.
$$(25x^2 + 2x^{-2} + 10) (25x^2 + 2x^{-2} - 10)$$

76.
$$(6x^2 - 3x + 4 - 2x^{-1})(6x^2 + 3x - 4 - 2x^{-1})$$

XIII.

Wurzeln oder irrationale Größen.

Allgemein ist $\sqrt[n]{a} = b$, wenn $b^n = a$ ist. Die Wurzel des n. Grades aus a oder die n. Wurzel aus a bedeutet die Zahl (b), welche nmal als Faktor gesetzt oder mit n potenzirt a giebt.

Das Zeichen V (ursprünglich ein r) nennt man das Wurzelzzeichen; die Zahl a, aus welcher man die Wurzel ziehen soll, heißt der Radikand; die Zahl n, mit welcher man die Wurzel b potenziren muß, um den Radikanden zu erhalten, heißt Wurzelerponent. Die Wurzel aus einer Zahl suchen oder ausziehen heißt radiziren. Da nach dem Obigen

$$\sqrt[n]{a^n} = a$$
, und ebenso $(\sqrt[n]{a})^n = a$

sein muß, so heben sich Wurzelexponent und Potenzexponent gegenseitig auf; Botenziren und Radiziren find somit entgegengesethe Operationen. Aus der Definition der Wurzel folgt ferner auch, daß

$$\sqrt[3]{a^{12}} = a^4$$
, $\sqrt[n]{a^{nx}} = a^x$

sein muß. Aus einer Potenz zieht man bemnach die Burzel, indem man den Botenzerponenten durch den Burzelerponenten dividirt.

Die Gleichungen $b^n = a$ und $\sqrt[n]{a} = b$ bedingen sich gegenseitig. Wenn die eine gilt, so muß auch die andere gelten. Hat man beim Potenziren $b^n = a$, so sind b und n gegeben, es wird a gesucht. Beim Radiziren verwandelt sich diese Gleichung in $\sqrt[n]{a} = b$; es sind

-1 60+203

a und n gegeben, es wird b gesucht. Das Radiziren ist mithim eine Umkehrung des Potenzirens. Bas beim Potenziren Potenz heißt, heißt beim Radiziren Radikand; was beim Potenziren Basis heißt, heißt beim Radiziren Burzel; was beim Potenziren Potenzerponent heißt, heißt beim Radiziren Burzelexponent.

Der Burzelerponent 2 wird meistens fortgelassen. Man schreibt statt Va nur Va, und wie man a' meistens aQuadrat liest, so liest man Va meistens Quadratwurzel aus a oder kurz nur Wurzel aus a.

Ebenso lieft man Va meistens Rubikwurzel aus a.

Eine Wurzel aus einer ganzen Zahl, welche sich durch eine ganze Zahl nicht angeben läßt, läßt sich auch nicht durch eine ganze Zahl und einen Bruch angeben, sondern nur genähert. Ebenso kann eine Wurzel aus einem Bruch, der auf seine einfachste Form gedracht ist, weder eine ganze Zahl, noch ein Bruch sein, wenn sich die Wurzel nicht aus dem Zähler und aus dem Renner ziehen läßt, kann also ebensalls nur genähert angegeben werden. Wurzeln, welche sich nur genähert angeben lassen, nennt man irrational. Wurzeln, welche sich genau in ganzen Zahlen sohr Brüchen angeben lassen, heißen rational. Die rationalen Zahlen sind entweder ganze, oder gebrochene; die irrationalen Zahlen sind weder ganze noch gebrochene.

Die Burzel aus 9 ist 3, mithin ist 1/9 eine rationale Größe. 11 ift eine irrationale Größe und läßt sich nur genähert angeben.

Eine Wurzel von einem geraden Grade kann positiv und negativ genommen werden, ist also doppelbeutig. So kann $\sqrt{a^2-+au}=-a$ gesetzt werden, da sowohl $(+a)^2$ als auch $(-a)^2$ wieder a^2 giebt. Ebenso kann $\sqrt{a^2-2ab+b^2}=a-b$ oder =b-a gesetzt werden, d. h. $\pm (a-b)$, $\sqrt{9}=\pm 3$. Aber $\sqrt{(+a)^2}$ dars nur =+a, $\sqrt{(-a)^2}$ nur =-a gesetzt werden.

Eine Burzel von einem geraden Grade aus einer negativen Zahl ist eine unmögliche Größe, da keine Zahl, mit einer geraden Zahl potenzirt, ein negatives Resultat geben kann. So ist V—9 eine unmögliche Größe, da weder +3, noch — 3 paßt. Sbenso ist allgemein 2^n —a eine unmögliche Größe. Man weiß von ihr nur, daß sie, mit 2n potenzirt, — a giebt. Die unmöglichen Größen werden imagisnäre Größen genannt, benen entgegen alle übrigen Größen reelle heißen.

Eine Wurzel von einem ungeraden Grade aus einer positiven Jahl muß wieder positiv, aus einer negativen Jahl muß wieder negativ sein. So ist $\sqrt[3]{+8} = +2$, weil $(+2)^3 = +8$ ist; $\sqrt[3]{-8} = -2$, weil $(-2)^3 = -8$ ist. Aber $\sqrt[3]{+8}$ kann nicht =-2, $\sqrt[3]{-8}$ nicht =+2 sein.

Ueber die Rechnung mit Burzeln ober Burzelgrößen gelten folgende Cabe:

Borten ? Formel vo

Bie !

1. \(\sqrt{7}, \)
2. \(\sqrt{0}, \)
3. \(\sqrt{8} \)

±. √a., 5. √a.:

7. Va⁶, 8. Vm³,

9. $\sqrt{x^4}$, 10. $\sqrt[7]{a^x}$,

10. 1/87, 11. 1/81, 12. 37/4

12.3/4,

14. (5)/a 15. (5)/2

16. (a) a
17. (4) x
18. (4-5

18, (4 \sqrt{a} 19, (8 \sqrt{a}

angeben.

1.
$$\sqrt[n]{ab} = \sqrt[n]{a}$$
 . $\sqrt[n]{b}$

2. $\sqrt[n]{a} = \sqrt[n]{a}$ $\sqrt[n]{b}$

3. $\sqrt[n]{a^m} = (\sqrt[n]{a})^m$

4. $\sqrt[n]{a^m} = \sqrt[n]{a^{mx}}$

5. $\sqrt[m]{\sqrt[n]{a}} = \sqrt[n]{\sqrt[n]{a}} = \sqrt[m]{a}$

Wie werben diese Sate bewiesen, und wie beigen bieselben in Worten? Bergig babei ben Sat nicht, ber entsteht, wenn bu bie Formel von rechts nach links lieft.

1 Maken Die Definition ber Murrel

1. Ueber die Definition Der Wurzel.				
√a,	$\sqrt[n]{1}$,	1/1		
$\sqrt[9]{1}$,	√a,	Va^0		
$\sqrt[3]{8^3}$,	$(\sqrt[4]{16})^4$,	$\sqrt[4]{16^4}$		
$(\sqrt[3]{x})^3$,	$\sqrt{y^2}$,	$\sqrt{m^4}$		
$\sqrt{3x} \cdot \sqrt{3x}$,	$(\sqrt{ay})^2$,	$\sqrt{(a-y)^2}$		
$-1, (\sqrt{2x-1})^2$	$\sqrt[3]{(ax - b)^3}$	$\sqrt[4]{(x-y)^4}$		
$\sqrt{b^{10}}$,	$\sqrt{c^{14}}$,	$\sqrt{\mathrm{d}^{2n}}$		
$\sqrt[3]{n^6}$, or $\sqrt{8}$	$\sqrt[3]{p^{12}}$,	$\sqrt[3]{q^{3x}}$		
₹y¹0,	⁶ √u ³⁰ ,	₹\v7x		
$\sqrt[x]{b^{2x}}$,	$\sqrt[x]{e^{5x}}$,	$\sqrt[n]{d^{np}}$		
$\sqrt[5]{32}$,	⁶√64 ,	₹ 729		
$7\sqrt{9}$	$5\sqrt{36}$,	$10\sqrt{49}$		
6/4,	8/1,96,	$10\sqrt{4\frac{21}{25}}$		
$(7\sqrt{x})^2$	$(a\sqrt{b})^2$,	$(x\sqrt{x})^2$		
	$(2\sqrt{5})^2$,	$(10\sqrt{10})^2$		
$(a\sqrt[3]{a})^3$,	$(2\sqrt{5})^3$,	$(2\sqrt[3]{5})^3$		
$(3\sqrt{x})^2 + (4\sqrt{x})^2$	$(a-b)^2 + (5\gamma$	$(\overline{b-x})^2$		
$(12\sqrt{b})^2 + (4\sqrt{b})^2$	$\sqrt{9b - 4a - 3}$	$(71/x)^2$		
	$ \frac{1}{\sqrt{a}}, \frac{1}{\sqrt{1}}, \frac{1}{\sqrt{8}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{5}}, 1$	$ \frac{1}{\sqrt{a}}, \qquad \frac{1}{\sqrt{1}}, \\ \frac{1}{\sqrt{1}}, \qquad \frac{1}{\sqrt{a}}, \\ \frac{1}{\sqrt{83}}, \qquad (\frac{1}{\sqrt{16}})^4, \\ (\frac{1}{\sqrt{x}})^3, \qquad \sqrt{y^2}, \\ \sqrt{3x} \cdot \sqrt{3x}, \qquad (\sqrt{xy})^2, \\ -1, (\sqrt{2x-1})^2, \sqrt[3]{(ax-b)^3}, \\ \sqrt{b^{10}}, \qquad \sqrt{c^{14}}, \\ \frac{1}{\sqrt{7}}, \sqrt{10}, \qquad \sqrt{c^{14}}, \\ \frac{1}{\sqrt{7}}, \sqrt[3]{p^{12}}, \sqrt[3]{p^{12}}, \\ \frac{1}{\sqrt{7}}, \sqrt[3]{p^{12}}, \sqrt[3]{p^{12}}, \\ \frac{1}{\sqrt{7}}, \sqrt[3]{p^{12}}, \sqrt[3]{p^{12}}, \sqrt[3]{p^{12}}, \\ \frac{1}{\sqrt{7}}, \sqrt[3]{p^{12}}, \sqrt[3]{p^{12$		

2.	Vereinfachung	bes	Radifanden.	Fortigaffung	bes	Menners	unter	ber
			233	urzel.				

Wurzel.				
1. √a²b,	$\sqrt{ax^6}$,	$\sqrt[4]{5x^4}$,	$\sqrt[5]{3x^5y}$	
$2.\sqrt{4ab^2}$,	$\sqrt{9a^2x}$,	$\sqrt{7x^2y^2}$,	$\sqrt{ax^4y^2}$	
3. $\sqrt{5abc^2}$,	$\sqrt{9a^4b^2c}$,	$\sqrt{16a^2bc^4}$,	$\sqrt{7a^2b^4x^2}$	
4. $\sqrt{a^2b^2}$,	$\sqrt{a^2+b^2}$,	$\sqrt{a^2-b^2}$,	$\sqrt{(a+b)^2}$	
$5.\sqrt{1+x^2}$	$\sqrt{1-x^2}$,	$\sqrt{(1+x)^2},$	$\sqrt{(1-x)^2}$	
6. $\sqrt[3]{8ab^3}$,	$\sqrt[3]{27 a^3 x}$,	$\sqrt[3]{11 \times^3 y^3}$,	$\sqrt[3]{12x^6y^9}$	
7. $\sqrt[3]{a^3b^3}$,	$\sqrt[3]{a^3 + b^3}$,	$\sqrt[3]{a^3-b^3}$,	$\sqrt[3]{(a-b)^3}$	
8. $\sqrt{x^3}$,	$\sqrt{x^7}$,	$\sqrt{x^{2n+1}}$,	$\sqrt{x^{2n-1}}$	
9. $\sqrt[3]{x^4}$,	$\sqrt[3]{\mathbf{x}^8}$,	$\sqrt[3]{x^{3n+1}}$,	$\sqrt[3]{\mathrm{x}^{3\mathrm{n}-2}}$	
10. $\sqrt[n]{x^{n+1}}$,	$\sqrt[n]{x^{n+3}}$	$\sqrt[n]{5 x^{2n+1}}$	$\sqrt[n]{a x^{2n-1}}$	
11. $\sqrt{ab^3c^4}$,	$V\overline{4a^2b^2c^3}$,	$\sqrt{7x^4y^9z^{11}}$,	$\sqrt{9x^3y^8z^{10}}$	
12. ³ /ab ³ c ⁴ ,	$\sqrt[3]{8a^5b^2c^3}$,	$\sqrt[3]{7 \times^2 y^9 z^4}$,	$\sqrt[3]{9x^3y^8z^{10}}$	
13. $\sqrt{a^2 + b^4}$,	$\sqrt{a^6+b^6}$,	$Va^{2}(1+b^{2}),$	$\sqrt[3]{a^3(1-b)^3}$	
14. $\sqrt{28}$,	$\sqrt{45}$,	$\sqrt{18}$,	$\sqrt{24}$	
15. $\sqrt{27}$,	$\sqrt{32}$,	1/96,	$\sqrt{243}$	
16. $\sqrt{320}$,	$\sqrt{405}$,	$\sqrt{363}$,	$\sqrt{432}$	
17. $3\sqrt{8}$,	$5\sqrt{80}$,	81/75,	$6\sqrt{150}$	
18. $3\sqrt{12a^2}$,	$4\sqrt{20b^2}$,	5\square 40c,	$7\sqrt{48ax^2}$	
19. $\frac{5}{2}\sqrt{24a^3}$,	$\frac{4}{3}\sqrt{27b^5}$,	$\frac{5}{6}\sqrt{45c^6}$,	$\frac{5}{8}\sqrt{80\mathrm{x}^3\mathrm{y}^4}$	
20. $1\frac{1}{4}\sqrt{72a^2}$,	$7\frac{1}{2}\sqrt{96b^7}$,	$3\frac{1}{3}\sqrt{54e^9}$,	$2\frac{1}{5}\sqrt{125x^2y^3}$	
21. $\sqrt[3]{16}$,	$\sqrt[3]{24}$,	$\sqrt[3]{54}$,	$\sqrt[3]{72}$	
$22.\sqrt[3]{80}$,	$\sqrt[3]{-81}$,	$\sqrt[3]{250}$,	$\sqrt[3]{-648}$	
$23.\ 2\sqrt[3]{48},$	$7\sqrt[3]{108}$,	51/- 320,	$8\sqrt[3]{-375}$	
24. $\sqrt{\frac{3}{4}}$,	$\sqrt{\frac{5x}{9}}$,	$8\sqrt{\frac{7a}{16x^2}},$	$15\sqrt{\frac{11 b}{25 y^2}}$,	
25. $\sqrt{\frac{1}{2}}$,	$\sqrt{\frac{1}{3}}$,	$\sqrt{\frac{3}{5}}$,	$\sqrt{\frac{1}{8}}$,	
26. $\sqrt{\frac{5}{7}}$,	$\sqrt{\frac{9}{8}}$,	$\sqrt{\frac{5}{14}}$,	$\sqrt{\frac{1}{2}}$	
$27.\sqrt{\frac{1}{2,8}}$	$\sqrt{\frac{1}{0,75}}$,	$\sqrt{\frac{3}{0,5}}$,	$\sqrt{\frac{4}{0,7}}$	

 $\begin{array}{c} 32.\ 7a\ b) \\ 33.\ \sqrt{\frac{a^{2}-1}{x^{2}}} \\ 34.\ \sqrt{\frac{a^{2}-1}{x^{2}}} \\ 35.\ \sqrt{\frac{a^{2}-1}{x^{2}}} \\ 36.\ \sqrt{\frac{a^{2}-1}{x^{2}}} \\ 38.\ \sqrt{x} \\ 38.\ \sqrt{x} \\ 38.\ \sqrt{x} \\ 38.\ \sqrt{x} \\ 20.\ \sqrt{x} \\ 20.\$

40. V2,4, V

41. 1/1024?

1. \sqrt{3} + 2. \sqrt{3} +

28.
$$\sqrt{\frac{5,4}{2,4}}$$
 $\sqrt{\frac{0,8}{3,6}}$ $\sqrt{\frac{4,4}{0,06}}$ $\sqrt{\frac{0,15}{5,4}}$, 29. $a\sqrt{\frac{x}{a}}$ $b\sqrt{\frac{x^2}{b}}$ $c\sqrt{\frac{x^3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{3}{c}}$ $c\sqrt{\frac{7}{a^3}}$ $c\sqrt{\frac{13}{8}a^7}$ $c\sqrt{\frac$

39. Wenn $\sqrt{50}=a$ ist, wie groß sind dann $\sqrt{8}$, $\sqrt{18}$, $\sqrt{32}$, $\sqrt{72}$ und $\sqrt{98}$?

40. Wenn $\sqrt{\frac{3}{5}}$ = a ift, wie groß find dann $\sqrt{\frac{5}{3}}$, $\sqrt{15}$, $\sqrt{60}$, $\sqrt{24}$, $\sqrt{3\frac{3}{4}}$, $\sqrt{5\frac{2}{5}}$?

41. Wenn $\sqrt[3]{250}$ = a ist, wie groß sind bann $\sqrt[3]{16}$, $\sqrt[3]{54}$, $\sqrt[3]{128}$, $\sqrt[3]{1024}$?

3. Addition und Subtraftion ber Wurgeln.

1.
$$\sqrt{3} + 2\sqrt{3}$$
, $8\sqrt{7} - 3\sqrt{7}$, $9\sqrt{5} - \sqrt{5}$
2. $\sqrt{3} + \sqrt{2}$, $\sqrt{a} + \sqrt{b}$, $\sqrt{a} + 3\sqrt{a}$

nd min der

ray2

12 b 4 x 2

-x|2

 $\frac{(a-b)_2}{5x_2\lambda_0}$

h-1

lo-i

Xh-l

X3y5z10

ZJylli

3 (1 - b)

43

32

150 48ax¹

80x151

/125x¹7

9

- 648

- 375

Tib tip"

3.
$$a\sqrt{x} - \sqrt{x}$$
, $a\sqrt{x} - b\sqrt{x}$, $a\sqrt{x} - b\sqrt[3]{x}$

4.
$$8\sqrt{a} + 5\sqrt{x} - 7\sqrt{a} + 4\sqrt{a} - 6\sqrt{x} - 3\sqrt{a}$$

5.
$$\sqrt{a} + 2\sqrt{b} - 3\sqrt{a} + 5\sqrt{b} + 2\sqrt{a^2} - 6\sqrt{b}$$

6.
$$a + 2\sqrt{a} + 3\sqrt[3]{a} + 4\sqrt[4]{a} - \sqrt[4]{a^2} - 3\sqrt[6]{a^2} - \sqrt[6]{a^3}$$

7.
$$\sqrt{x} + 3\sqrt{2x} - 2\sqrt{3x} + \sqrt{4x} - \sqrt{8x} + \sqrt{12x}$$

8.
$$2\sqrt{a} + 5\sqrt{b} - x\sqrt{a} - c\sqrt{b} + \sqrt{(x-1)^2a} + \sqrt{bc^2}$$

9.
$$3\sqrt{a} + 2\sqrt{b} - 4\sqrt{a} - 5\sqrt{b} + \sqrt{4a} + \sqrt{9b}$$

10.
$$7\sqrt{x} - 4\sqrt[3]{x} + 5\sqrt[3]{x} - 6\sqrt{x} - \sqrt[6]{x^2} + \sqrt[6]{x^3}$$

11.
$$5\sqrt{x} - 7\sqrt{y} + 2\sqrt{2x} + 8\sqrt{y} - \sqrt{4y} - \sqrt{8x}$$

12.
$$6\sqrt{x} + 3\sqrt{2x} - 5\sqrt{3x} - 2\sqrt{4x} + \sqrt{12x} - \sqrt{18x}$$

13.
$$4\sqrt{a^2x} + 3\sqrt{b^2x} + 2\sqrt{c^2x} + \sqrt{d^2x} - 2\sqrt{(b+d)^2x}$$

14.
$$7\sqrt{4x} + 4\sqrt{9x} + 3\sqrt{45x} - 5\sqrt{36x} - 2\sqrt{80x}$$

15.
$$2\sqrt{81a} - 3\sqrt{24a} + 5\sqrt{36a} + 2\sqrt{54a} - 4\sqrt{100a}$$

16.
$$4\sqrt{3}a - 7\sqrt{12}a^2 + 5\sqrt{48}a + 6\sqrt{27}a^2 - 5\sqrt{75}a$$

17.
$$3\sqrt{8} + 4\sqrt{32} - 5\sqrt{50} - 7\sqrt{72} + 6\sqrt{98}$$

18.
$$7\sqrt{12} - 5\sqrt{27} + 8\sqrt{48} - 6\sqrt{75} + 2\sqrt{108}$$

19.
$$5\sqrt[3]{16} + 3\sqrt[3]{-54} - 6\sqrt[3]{-128} + 7\sqrt[3]{-250} + 2\sqrt[3]{432}$$

20.
$$7\sqrt[3]{24} + 5\sqrt[3]{81} + 4\sqrt[3]{-192} + 2\sqrt[3]{-375} - \sqrt[3]{1029}$$

21.
$$\sqrt{(a+b)^2x} + \sqrt{(a-b)^2x} - \sqrt{a^2x} + \sqrt{(1-a)^2x} - \sqrt{x}$$

22.
$$\sqrt{4+4x^2}+\sqrt{9+9x^2}+\sqrt{a^2+a^2x^2}-5\sqrt{1+x^2}$$

23.
$$\sqrt{a-b} + \sqrt{16a-16b} + \sqrt{ax^2-bx^2} - \sqrt{9(a-b)}$$

4. Multiplitation gleichnamiger Burgeln.

. 7	$\sqrt{3}.7$	$\sqrt{12}$,	$\sqrt{2} \cdot \sqrt{50}$,	$\sqrt{28}.\sqrt{7}$
	power .	process	THE PERSON NAMED IN COLUMN	

2.
$$\sqrt{3} \cdot \sqrt{6}$$
, $\sqrt{5} \cdot \sqrt{10}$, $\sqrt{7} \cdot \sqrt{42}$
3. $\sqrt{10} \cdot \sqrt{15}$, $\sqrt{14} \cdot \sqrt{35}$, $\sqrt{20} \cdot \sqrt{30}$

3.
$$\sqrt{10}$$
. $\sqrt{15}$, $\sqrt{14}$. $\sqrt{35}$, $\sqrt{20}$. $\sqrt{30}$
4. $\sqrt[3]{2}$. $\sqrt[3]{4}$, $\sqrt[3]{3}$. $\sqrt[3]{18}$. $\sqrt[3]{5}$. $\sqrt[3]{50}$

4.
$$\sqrt[3]{2} \cdot \sqrt[3]{4}$$
, $\sqrt[3]{3} \cdot \sqrt[3]{18}$, $\sqrt[3]{5} \cdot \sqrt[3]{50}$

5.
$$\sqrt{a} \cdot \sqrt{x}$$
, $2\sqrt{a} \cdot \sqrt{3x}$, $5\sqrt{2a} \cdot 3\sqrt{5x}$
6. $\sqrt{a} \cdot \sqrt{3a}$, $\sqrt{5x} \cdot \sqrt{x}$, $\sqrt{y} \cdot \sqrt{8y}$

7. a/x.

8. 1/28.

9. 1/6x.

10. 1/7a.

11. Vd3.

12. Vp.

13. 1/2d2

14. Va.

15. Va.]

16, Va.]

17, 1/2a

18, $\sqrt{\frac{2}{3}}$

20. (37

21. (4)

22. (21/

23. (51/

24. (7/2

25. (21/ 26. (1/7.

28. (3/2 30. (8+

32. (57/

34. (2a -

36. (21/8

37. (21/3

38. (3+

	XIII. Burzeln.	61
	7. $a\sqrt{x}$. $b\sqrt{x}$, $5\sqrt{3}$. $2\sqrt{3}$, $7\sqrt{x}$. $a\sqrt{x}$	
	8. $\sqrt{2}a$. $\sqrt{8a}$, $\sqrt{3}a$. $\sqrt{5a}$, $\sqrt{6}x$. $\sqrt{8}x$	
	9. $\sqrt{6x}$. $\sqrt{10x}$, $\sqrt{3y}$. $\sqrt{6y}$, $\sqrt{5z}$. $\sqrt{35z}$	
	10. $\sqrt{7a} \cdot \sqrt{21a}$, $\sqrt{10b} \cdot \sqrt{15b}$, $\sqrt{14c} \cdot \sqrt{70c}$	
	11. $\sqrt{\mathbf{d}^3} \cdot \sqrt{\mathbf{d}^3}$, $\sqrt{\mathbf{b}^5} \cdot \sqrt{\mathbf{b}^7}$, $\sqrt{\mathbf{c}^7} \cdot \sqrt{7\mathbf{c}}$	
2	12. \sqrt{p} . $\sqrt{p^9}$, $\sqrt{5q}$. $\sqrt{q^5}$, $\sqrt{q^{n+1}}$. $\sqrt{q^{n-1}}$	
	13. $\sqrt[3]{2d^2}$. $\sqrt[3]{4d}$, $\sqrt[3]{9x}$. $\sqrt[3]{9x^2}$, $\sqrt[3]{25y^2}$. $\sqrt[3]{50y^2}$	
	14. $\sqrt[n]{a} \cdot \sqrt[n]{b} \cdot \sqrt[n]{c}$, $\sqrt[n]{a} \cdot \sqrt[n]{a^2} \cdot \sqrt[n]{x}$, $\sqrt[n]{a} \cdot \sqrt[n]{a^2} \cdot \sqrt[n]{ax}$	
	15. \sqrt{a} . $\sqrt{\frac{x}{a}}$, a. $\sqrt{\frac{x}{a^2}}$, \sqrt{a} . $\sqrt{\frac{x}{a^3}}$	
Z.	16. \sqrt{a} . $\sqrt{\frac{a}{x}}$, \sqrt{a} . $\sqrt{\frac{5x}{4a}}$, $\sqrt{3a}$. $\sqrt{\frac{7x}{6a}}$	
	17. $\sqrt{2a}$. $\sqrt{\frac{3a}{2x}}$, $\sqrt{5a}$. $\sqrt{\frac{10a}{3x}}$, $\sqrt{7a}$. $\sqrt{\frac{35a}{3x}}$	
	18. $\sqrt{\frac{2}{3}} \cdot \sqrt{\frac{5}{6}}$, $\sqrt{\frac{7}{40}} \cdot \sqrt{\frac{21}{10}}$, $\sqrt{\frac{24}{35}} \cdot \sqrt{\frac{10}{21}}$.00
	19. $\sqrt{\frac{2a}{3b}} \cdot \sqrt{\frac{2b}{3a}}$, $\sqrt{\frac{5a}{6b}} \cdot \sqrt{\frac{10a}{3b}}$, $\sqrt{\frac{8a}{15x}} \cdot \sqrt{\frac{10ax}{3y^2}}$	
	20. $(3\sqrt{8} + \sqrt{18} + \sqrt{50} - 2\sqrt{72}) \cdot \sqrt{2}$	
	21. $(4\sqrt{12}-2\sqrt{27}+\sqrt{48}-\sqrt{75})\cdot\sqrt{3}$	
T	22. $(2\sqrt{6} - \sqrt{12} - \sqrt{24} + \sqrt{48}) \cdot \sqrt{2}$	
90	23. $(5\sqrt{24} - 4\sqrt{32} + 3\sqrt{50} - 3\sqrt{54}) \cdot \sqrt{3}$	-
	24. $(7\sqrt{2} - 5\sqrt{6} - 3\sqrt{8} + 4\sqrt{20})$. $3\sqrt{2}$	
	25. $(2\sqrt{20} - 7\sqrt{8} - 3\sqrt{5} + 3\sqrt{18}) \cdot 4\sqrt{10}$ 26. $(\sqrt{7} - \sqrt{3}) (\sqrt{3} - \sqrt{2})$ 27. $(\sqrt{6} + \sqrt{3}) (\sqrt{3} - \sqrt{2})$	10
	28. $(3\sqrt{2}-2\sqrt{3})(7\sqrt{2}+5\sqrt{3})$ 29. $(5\sqrt{7}-2\sqrt{5})(3\sqrt{7}+10)$	
	30. $(8 + 3\sqrt{5})$ $(2 - \sqrt{5})$ 31. $(3 - \sqrt{2})$ $(2 + 3\sqrt{2})$	0)
	32. $(5\sqrt{3} + \sqrt{6})(5\sqrt{2} - 2)$ 33. $(5-2\sqrt{3})(6+5\sqrt{3})$	
	34. $(2a + 3\sqrt{x})(3a - 2\sqrt{x})$ 35. $(4\sqrt{a} - \sqrt{3x})(\sqrt{a} + 2\sqrt{a})$	$\overline{3x}$)
	36. $(2\sqrt{6} + 5\sqrt{3} - 7\sqrt{2}) (\sqrt{6} - 2\sqrt{3} + 4\sqrt{2})$. 00
	37. $(2\sqrt{30} - 3\sqrt{5} + 5\sqrt{3})$ $(\sqrt{8} + \sqrt{3} - \sqrt{5})$	

38. $(3+\sqrt{6}+\sqrt{15})(2+\sqrt{6}-\sqrt{10})$

39.
$$(2\sqrt{5}+\sqrt{8}-\sqrt{12})(\frac{1}{3}\sqrt{30}-\frac{2}{3}\sqrt{3}+\sqrt{2})$$

$$39_{1} \cdot (\sqrt{75} + 3\sqrt{162} - 2\sqrt{450}) (3\sqrt{147} + \sqrt{98} - \sqrt{675})$$

$$39_2 \cdot (\sqrt{243} - 3\sqrt{242} + 2\sqrt{968}) \cdot (2\sqrt{1452} - \sqrt{242} - 5\sqrt{147})$$

$$39_3.(5\sqrt{112}+\sqrt{176}-\sqrt{4375})(3\sqrt{396}+\sqrt{175}-2\sqrt{539})$$

$$39_4 \cdot (\sqrt[3]{3} + \sqrt[3]{2}) \cdot (2\sqrt[3]{9} - 3\sqrt[3]{4}), \cdot (\sqrt[3]{24} - \sqrt[3]{4}) \cdot (\sqrt[3]{9} + \sqrt[3]{54})$$

$$39_5.(\sqrt[3]{25} + \sqrt[3]{9})(\sqrt[3]{135} - \sqrt[3]{375}), \ (7\sqrt[3]{16} - 3\sqrt[3]{49})(3\sqrt[3]{4} + 4\sqrt[3]{7})$$

$$39_6 \cdot (5\sqrt[3]{500} + \sqrt[3]{24} - 6\sqrt[3]{256}) (\sqrt[3]{54} + 5\sqrt[3]{243} - 4\sqrt[3]{576})$$

$$39_7.(\sqrt[3]{128} - 3\sqrt[3]{49} + \sqrt[3]{2000})(\sqrt[3]{500} + \sqrt[3]{448} - \sqrt[3]{32})$$

40.
$$(a + \sqrt{b}) (a - \sqrt{b})$$
 41. $(\sqrt{a} + x) (\sqrt{a} - x)$

42.
$$(\sqrt{a} + \sqrt{b}) (\sqrt{a} - \sqrt{b})$$
 43. $(\sqrt{3a} + \sqrt{2b}) (\sqrt{3a} - \sqrt{2b})$

44.
$$(a\sqrt{x} + \sqrt{y})(a\sqrt{x} - \sqrt{y})$$
 45. $(a\sqrt{b} + x\sqrt{y})(a\sqrt{b} - x\sqrt{y})$

46.
$$(\sqrt{3} + \sqrt{2}) (\sqrt{3} - \sqrt{2})$$
 47. $(\sqrt{7} + \sqrt{3}) (\sqrt{7} - \sqrt{3})$

48.
$$(3\sqrt{5}+2\sqrt{11})(3\sqrt{5}-2\sqrt{11})$$
 49. $(7+4\sqrt{3})(7-4\sqrt{3})$

50.
$$(\sqrt{x+y}+\sqrt{y})$$
 $(\sqrt{x+y}-\sqrt{y})$

51.
$$(\sqrt{x} + \sqrt{x - y}) (\sqrt{x} - \sqrt{x - y})$$

$$52.(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})$$

$$53.(\sqrt{9x+5}+3\sqrt{x})(\sqrt{9x+5}-3\sqrt{x})$$

54.
$$(\sqrt{a+b+x}+\sqrt{a+b-x})(\sqrt{a+b+x}-\sqrt{a+b-x})$$

55.
$$(\sqrt{3a-b}+\sqrt{3b-a})$$
 $(\sqrt{3a-b}-\sqrt{3b-a})$

56.
$$\left(\sqrt{\frac{a+1}{2}} + \sqrt{\frac{a-1}{2}}\right) \left(\sqrt{\frac{a+1}{2}} - \sqrt{\frac{a-1}{2}}\right)$$

57.
$$[\sqrt{(x+1)(y+1)} + \sqrt{(x-1)(y-1)}]$$
. $[\sqrt{(x+1)(y+1)} - \sqrt{(x-1)(y-1)}]$

58.
$$\sqrt{a+\sqrt{b}} \cdot \sqrt{a-\sqrt{b}}$$
 59. $\sqrt{\sqrt{x}+\sqrt{y}} \cdot \sqrt{\sqrt{x}-\sqrt{y}}$

$$59_{1}$$
. $\sqrt{9+\sqrt{17}}$ · $\sqrt{9-\sqrt{17}}$ 59_{2} . $\sqrt{6+2\sqrt{5}}$ · $\sqrt{6-2\sqrt{5}}$

$$59_3$$
. $\sqrt[n]{8+3\sqrt{7}}$ · $\sqrt[n]{8-3\sqrt{7}}$ 59_4 . $\sqrt[3]{2\sqrt{13}+5}$ · $\sqrt[3]{2\sqrt{13}-5}$

60.
$$(\sqrt{a} + \sqrt{b})^2$$
 61. $(a - b\sqrt{x})^2$

62.
$$(\sqrt{3} + \sqrt{2})^2$$
 63. $(\sqrt{3} - \sqrt{2})^2$

70. (a + 72. (
$$\sqrt{3}$$

80. (
$$\sqrt{a}$$

83₉.
$$\sqrt{\chi^2}$$

8111.
$$\mathfrak{B}$$
urzeln. 63

64. $(1+\sqrt{2})^2$ 65. $(-1+\sqrt{3})^2$
66. $(\sqrt{6}-\sqrt{2})^2$ 67. $(3\sqrt{2}-2\sqrt{3})^2$
68. $(\sqrt{x+y}+\sqrt{x-y})^2$ 69. $(\sqrt{a-x}-\sqrt{x-b})^2$
70. $(a+\sqrt{1-a^2})^2$ 71. $(\sqrt{1+ax}-\sqrt{1-ax})^2$
72. $(\sqrt{3-x}-\sqrt{2+x})^2$ 73. $(\sqrt{7-5x}+\sqrt{4x-5})^2$
74. $(\sqrt{3a-2b}-\sqrt{3b-2a})^2$ 75. $(a\sqrt{1-b^2}+b\sqrt{1+a^2})^2$
76. $(\sqrt{x}+\frac{1}{\sqrt{x}})^2$ 77. $(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}})^2$
78. $(\sqrt{\frac{2a}{3b}}-\sqrt{\frac{2b}{3a}})^2$ 79. $(\sqrt{\frac{a-x}{x-b}}-\sqrt{\frac{x-b}{a-x}})^2$
80. $(\sqrt{a+b-x}+\sqrt{a-b+x})^2$
80. $(\sqrt{a+b-x}+\sqrt{a-b+x})^2$
81. $[\sqrt{(a+x)}(x+b)-\sqrt{(a-x)}(x-b)]^2$
82. $(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}+\sqrt{3}-\sqrt{5})$
82. $(\sqrt{2}+\sqrt{3}+\sqrt{5})(\sqrt{2}+\sqrt{3}-\sqrt{5})$
83. $\sqrt[3]{x}+\sqrt{x^2-1}\cdot\sqrt[3]{x}-\sqrt{x^2-1}$

1/5-1

1/675)

-5/H

-2/50

1+150

(3)/4+4/1

4/576)

/32) -z

/3a-18

1/b-x/1 7-1/3

41/3)

a+b-1 -a)

1/2/13- 84. (/a+/b)3

86. $(1+\sqrt{2})^3$

88. $(\sqrt[3]{3} - \sqrt[3]{2})^3$

87. $(2-\sqrt{3})^3$ 89. $(\sqrt[3]{5} - \sqrt[3]{4})^3$

 $83_{9} \cdot \sqrt{x^{2}-1} \cdot \sqrt{\frac{x+1}{x-1}}$ $83_{10} \cdot \sqrt{a^{2}-b^{2}} \cdot \sqrt{\frac{5a+5b}{ax^{2}-bx^{2}}}$

85. $(\sqrt[3]{a} + \sqrt[3]{b})^3$

90.
$$(a\sqrt{b}+b\sqrt{a})(\sqrt{a}-\sqrt{b})$$
 91. $(a+b-\sqrt{ab})(\sqrt{a}+\sqrt{b})$

92.
$$(\sqrt{x} + \sqrt{y}) (x^2 + xy + y^2) (\sqrt{x} - \sqrt{y})$$

93.
$$(a + b + \sqrt[3]{a^2b} + \sqrt[3]{ab^2})(\sqrt[3]{a} - \sqrt[3]{b})$$

94.
$$(\sqrt{a} + \sqrt{b})^2 + (\sqrt{a} - \sqrt{b})^2$$

95.
$$(\sqrt{a} + \sqrt{b})^2 - (\sqrt{a} - \sqrt{b})^2$$

96.
$$(a + \sqrt{x})^3 + (a - \sqrt{x})^3$$

97.
$$(\sqrt{x} + \sqrt{y})^4 + (\sqrt{x} - \sqrt{y})^4$$

98.
$$(a + \sqrt{x})^4 - (a - \sqrt{x})^4$$

99.
$$(a + \sqrt{x})^5 + (a - \sqrt{x})^5$$

5. Dibifion gleichnamiger Wurgeln.

Fortigaffung ber Burgeln aus bem Renner.

1.	$\frac{V_{\overline{12}}}{V_{\overline{6}}}$,	$\frac{V_{18}}{V_{\overline{2}}}$,	$\frac{\sqrt{54}}{\sqrt{3}}$,	$\frac{\sqrt{72}}{\sqrt{6}}$
2.	$\frac{\sqrt{2x}}{\sqrt{x}}$,	$\frac{V_{7x}}{V_{7}}$	$\frac{\sqrt{6x}}{\sqrt{2x}}$	$\frac{\sqrt{48 x}}{\sqrt{6 x}}$
	$\frac{a}{Va}$,	$\frac{a}{\sqrt[3]{a}}$,	a //a,	$\frac{1}{Va}$
4.	$\frac{3}{\sqrt[]{3}}$,	$\frac{2}{\sqrt{2}}$,	$\frac{\frac{8}{\sqrt[4]{a}}}{\sqrt[4]{6}}$, $\frac{8}{\sqrt[4]{6}}$, $\frac{48}{5\sqrt[4]{32}}$,	$\frac{1}{V\bar{5}}$
5.	$\frac{9}{2\sqrt{3}}$,	$\frac{10}{3\sqrt{5}}$,	$\frac{48}{5\sqrt{32}}$,	54 V75.
6.	$\frac{a}{\sqrt[3]{a^2}}$,	$\frac{a}{\sqrt[4]{a^3}}$,	$\frac{a}{\sqrt[n]{a^{n-1}}}$	$\frac{\mathbf{a}}{\sqrt[n]{\mathbf{a}}}$
	$\frac{\mathbf{a}}{\sqrt[7]{\mathbf{a}^5}}$,	$\frac{a}{\sqrt[5]{a^2}}$,	$\frac{a}{\sqrt[8]{a^3}}$,	$ \frac{a}{\sqrt[n]{a}} $ $ \frac{a}{\sqrt[n]{a}} $ $ \frac{a}{\sqrt[n]{a^8}} $ $ \frac{x^2 - 1}{\sqrt[n]{a^8}} $
8.	$\frac{a+b}{Va+b}$	$\frac{a^2-b^2}{\sqrt{a-b}},$	$\frac{a^2-1}{\sqrt{a-1}},$	$\frac{x^2-1}{Vx+1}$

11.
$$3\sqrt{6}: 2\sqrt{3}$$
, $5\sqrt{7}: 2\sqrt{5}$, $4\sqrt{5}: 5\sqrt{2}$, $8\sqrt{9}: 3\sqrt{2}$

Barber

12.6:1

13. a :]

14. 14:

15. $\sqrt{\frac{a}{b}}$

 $18_2 \cdot \left(\frac{x}{a}\right)$

18, (x)

12. 6:
$$\sqrt{\frac{2}{3}}$$
, 15: $\sqrt{\frac{5}{7}}$, 18: $\sqrt{\frac{5}{7}}$, 20: $5\sqrt{\frac{1}{6}}$

13. a: $\sqrt{\frac{a}{b}}$, a: $\sqrt{\frac{a}{b^2}}$, ax: $\sqrt{\frac{a}{x}}$, $\frac{a}{x}$: \sqrt{ax}

14. $\sqrt{\frac{1}{5}}$: 2, $\sqrt{\frac{8}{9}}$: 6, $\sqrt{\frac{25}{27}}$: 10, $\sqrt{\frac{5}{8}}$: $\frac{5}{4}$

15. $\sqrt{\frac{a}{b}}$: a, $\sqrt{\frac{a^2}{b}}$: a, $\sqrt{\frac{a^3}{b}}$: ab, $\sqrt{\frac{a}{b}}$: $\frac{a}{b}$

16. \sqrt{a} : $\sqrt{\frac{a}{b}}$, \sqrt{ab} : $\sqrt{\frac{5}{6}}$: $\frac{5}{\sqrt{3}}$, $\frac{7}{\sqrt{8}}$: $\sqrt{\frac{7}{8}}$, $\sqrt{\frac{3}{5}}$: $\sqrt{\frac{3}{$

19.
$$\frac{1}{2+\sqrt{3}}$$
, $\frac{1}{3-\sqrt{7}}$, $\frac{3}{3+\sqrt{6}}$, $\frac{2}{2-\sqrt{2}}$

20. $\frac{1}{1+\sqrt{2}}$, $\frac{1}{\sqrt{2}+\sqrt{3}}$, $\frac{5}{\sqrt{2}+\sqrt{7}}$, $\frac{\sqrt{3}}{2-\sqrt{3}}$

21. $\frac{13}{7-\sqrt{10}}$, $\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, $\frac{12}{4-\sqrt{7}}$, $\frac{11}{5+\sqrt{3}}$

22. $\frac{13}{5+2\sqrt{3}}$, $\frac{14}{8-5\sqrt{2}}$, $\frac{12}{7-3\sqrt{5}}$, $\frac{5\sqrt{2}}{\sqrt{2}+3\sqrt{2}}$

23. $\frac{7-\sqrt{5}}{3+\sqrt{5}}$, $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$, $\frac{9-5\sqrt{3}}{7-3\sqrt{3}}$

24. $\frac{3+\sqrt{6}}{\sqrt{3}+\sqrt{2}}$, $\frac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}$, $\frac{7\sqrt{5}+5\sqrt{7}}{\sqrt{7}+\sqrt{5}}$, $\frac{2\sqrt{3}+\sqrt{6}}{\sqrt{3}+\sqrt{6}}$, $\frac{9+\sqrt{6}}{\sqrt{3}+\sqrt{6}}$

/ab:/br /72:/9

8/9:37

25.
$$\frac{a}{a + \sqrt{a}}$$
, $\frac{1}{a - \sqrt{b}}$, $\frac{1}{\sqrt{x} - \sqrt{y}}$, $\frac{\sqrt{x} - \sqrt{y}}{\sqrt{x} + \sqrt{y}}$
26. $\frac{5 + \sqrt{x}}{5 - \sqrt{x}}$, $\frac{3 + 2\sqrt{x}}{5 + 3\sqrt{x}}$, $\frac{a + b\sqrt{x}}{c + d\sqrt{x}}$, $\frac{a\sqrt{x} - b\sqrt{y}}{c\sqrt{x} - d\sqrt{y}}$

27.
$$\frac{28}{3 + \sqrt{2} + \sqrt{7}}$$
28. $\frac{110}{4 + \sqrt{5} + \sqrt{11}}$
29. $\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$
30. $\frac{2\sqrt{15}}{\sqrt{3} + \sqrt{5} + 2\sqrt{2}}$

31.
$$\frac{1+3\sqrt{2}-2\sqrt{3}}{\sqrt{6}+\sqrt{3}+\sqrt{2}}$$
 32. $\frac{60\sqrt{2}+12\sqrt{3}}{5\sqrt{6}+3\sqrt{2}-2\sqrt{3}}$

33.
$$\frac{1}{2 + \sqrt{2} + \sqrt{3} + \sqrt{6}}$$
 34. $\frac{\sqrt{6} - \sqrt{5} - \sqrt{3} + \sqrt{2}}{\sqrt{6} + \sqrt{5} - \sqrt{3} - \sqrt{2}}$

35.
$$\frac{2}{\sqrt{a+1} + \sqrt{a-1}}$$
36. $\frac{2y}{\sqrt{x+y} + \sqrt{x-y}}$
37. $\frac{a+x+\sqrt{a^2+x^2}}{a+x-\sqrt{a^2+x^2}}$
38. $\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}$

39.
$$\frac{1}{a\sqrt{1+b^2+b\sqrt{1+a^2}}}$$
 40. $\sqrt{\frac{a+\sqrt{x}}{a-\sqrt{x}}}$

41.
$$\sqrt{\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}}$$
 42. $\sqrt{\frac{a + \sqrt{a^2 - 1}}{a - \sqrt{a^2 - 1}}}$

43.
$$\frac{a}{\sqrt{1-b^2}-b}\frac{\sqrt{1-a^2}}{\sqrt{1-b^2}+\sqrt{1-a^2}}$$
 44. $\frac{x}{\sqrt{1-x^2}+y}\frac{\sqrt{1-y^2}}{\sqrt{1-y^2}+y}\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}$

45.
$$\frac{V(1+a)(1+b)-V(1-a)(1-b)}{V(1+a)(1+b)+V(1-a)(1-b)}$$

$$46.\,\frac{(\mathrm{a}-\alpha)\,\,\sqrt{\mathrm{b}^2+\beta^2}-(\mathrm{b}-\beta)\,\,\sqrt{\mathrm{a}^2+\alpha^2}}{(\mathrm{b}+\beta)\,\,\sqrt{\mathrm{a}^2+\alpha^2}+(\mathrm{a}+\alpha)\,\,\sqrt{\mathrm{b}^2+\beta^2}}$$

47.
$$\frac{\sqrt{1+a}-\sqrt{1-a}+\sqrt{1+b}-\sqrt{1-b}}{\sqrt{1+a}+\sqrt{1-a}+\sqrt{1+b}+\sqrt{1-b}}$$

48.
$$\frac{\sqrt{1+a}-\sqrt{1-a}-\sqrt{1+b}+\sqrt{1-b}}{\sqrt{1+a}+\sqrt{1-a}+\sqrt{1+b}+\sqrt{1-b}}$$

6. Anwendung ber Sape
$$\sqrt[m]{a^n} = \left(\sqrt[m]{a}\right)^n$$
 und $\sqrt[mx]{a^{nx}} = \sqrt[m]{a^n}$.
Multiplifation und Division ungleichnamiger Burgeln.

1.
$$\sqrt{25^3}$$
, $\sqrt{36^3}$, $\sqrt{49^3}$, $\sqrt{16^3}$
2. $\sqrt{64^3}$, $\sqrt{81^3}$, $\sqrt{100^3}$, $\sqrt{196^3}$,

7.
$$\sqrt{(4a^2)}$$

8. $\sqrt[9]{a^{12}}$,

10.
$$\sqrt{e^{10}}$$
, 12. $\sqrt[3]{q^{30}}$,

15. a
$$\sqrt{b}$$
 16. ab $\sqrt{}$

7. $\sqrt{(4a^2-12ab+9b^2)^3}$, $\sqrt[3]{(a^3-3a^2b+3ab^2-b^3)^2}$ 8. $\sqrt[9]{a^{12}}$, $\sqrt[6]{a^9}$, $\sqrt[9]{a^{12}}$, $\sqrt[12]{a^{16}}$ 9. $\sqrt[6]{b^3}$, $\sqrt[4]{b^2}$, $\sqrt[4]{b^6}$, $\sqrt[4]{b^{10}}$, 10. $\sqrt[4]{e^{10}}$, $\sqrt[4]{e^5}$, $\sqrt[4]{e^{15}}$, $\sqrt[4]{e^5}$ 11. $\sqrt[4]{p^{12}}$, $\sqrt[4]{p^{12}}$, $\sqrt[4]{p^{12}}$, $\sqrt[4]{p^{12}}$, $\sqrt[4]{p^{15}}$,

 $14' \cdot \sqrt[1]{a^{2x} + b^{2x}}, \sqrt[1]{(a + b)^{2x}} \sqrt[1]{(a^x + b^x)^2}, \sqrt[1]{(a^2 + b^2)^x}$

5 1/4.

15. a \sqrt{b} *), $5\sqrt{2}$, $2\sqrt{0.5}$, $3a\sqrt{x}$ 16. ab \sqrt{c} , $(a + b) \sqrt{c}$, $(7 - a) \sqrt{x}$, $7a \sqrt{x}$ 17. a $\sqrt{\frac{x}{a}}$, $5\sqrt{0.6}$, $7\sqrt{\frac{5}{7}}$, $2a\sqrt{\frac{7x}{2a}}$

19. b $\sqrt[3]{\frac{a}{b}}$, $2\sqrt[3]{\frac{5}{2}}$, $4\sqrt[3]{\frac{3}{80}}$, $5\sqrt[3]{\frac{8}{75}}$

20. $\frac{a}{b}\sqrt{\frac{b}{a}}$, $\frac{a}{b}\sqrt{\frac{b^3c}{a}}$, $ab\sqrt{\frac{c}{ab}}$, $ab^2\sqrt{\frac{3c}{b^3}}$

21. $\frac{ab^2}{xy^2} \sqrt{\frac{xy^3}{ab^3}}$ $\frac{a}{b} \sqrt[3]{\frac{b^2 x}{a^2 y}}$, $\frac{a^2}{b} \sqrt[4]{\frac{b^5 x}{a^9 y}}$, $\frac{ab^n}{xy^n} \sqrt{\frac{ay^3}{b^3 x}}$

 $21_{1} \cdot (a+x) \sqrt{\frac{a-x}{a+x}}, \frac{a+1}{a-1} \sqrt{\frac{a-1}{a+1}}, \frac{x}{a} \sqrt{\frac{a^{4}-2a^{3}+a^{2}}{x^{4}+2x^{3}+x^{2}}}$ $21_{2} \cdot (a-x) \sqrt{\frac{9a+9b}{4a^{2}-8ax+4x^{2}}}, (a+b) \sqrt{\frac{ax^{2}-bx^{2}}{9a^{2}+18ab+9b^{2}}}$

 $21_3 \cdot (\sqrt{5}-2) \sqrt{9+4\sqrt{5}}, \qquad (\sqrt{10}+\sqrt{6}) \sqrt{4-\sqrt{15}}$

 $21_4 \cdot (2\sqrt{2} + \sqrt{6}) \sqrt{7 - 4\sqrt{3}}, (\sqrt{3} - \sqrt{2}) \sqrt{12 + 5\sqrt{6}}$

22. 1/a. 1/a, 1/b. 1/b, 1/c. 1/d, 1/x. 1/y

23. \sqrt{x} . $\sqrt[3]{x}$, \sqrt{m} . \sqrt{m} , \sqrt{p} . $\sqrt[3]{q}$, \sqrt{a} . $\sqrt[3]{b}$

*) In ben Aufgaben 15. — 214. foll ber Faktor, welcher vor ber Burgel fieht, unter bie Wurzel gebracht werben.

 $\sqrt[5]{243^3}$, $\sqrt[5]{3125^3}$,

 $\sqrt[8]{125^2}$. $\sqrt[8]{343^2}$

 $\sqrt[4]{256^3}$, $\sqrt[4]{1296^3}$

 $\sqrt{(x^2+2x+1)^3}$

7/1000003

2a \$\sqrt{5}

5*

$$\begin{array}{c} \frac{\sqrt{1}}{\sqrt{1}} \\ \frac{\sqrt{1}}$$

 $4.\sqrt[4]{16^3}$, $\sqrt[4]{81^3}$,

6. $\sqrt{(a^2-2ab+b^2)^3}$

18. a 1/b, 2 1/3,

 $5.\sqrt[5]{32^3}$

$$i = \sqrt[n]{a^i}$$
.

В	BADISCHE LANDESBIBLIOTHEK	

24.
$$\sqrt[3]{c}$$
. $\sqrt[3]{c}$, $\sqrt[4]{d}$. $\sqrt[3]{d}$, $\sqrt[3]{a}$. $\sqrt[3]{c}$, $\sqrt[4]{x}$. $\sqrt[4]{y}$
25. $\sqrt[4]{a}$. $\sqrt[4]{a}$, $\sqrt[4]{d}$, $\sqrt[4]{x}$. $\sqrt[4]{y}$, $\sqrt[4]{p}$. $\sqrt[4]{p}$.

$$27. \sqrt[3]{a} \cdot \sqrt[4]{\frac{b}{a}}, \sqrt[3]{x} \cdot \sqrt[6]{\frac{a}{a}}, \sqrt[3]{x} \cdot \sqrt[9]{\frac{y}{a}}, \sqrt[4]{d} \cdot \sqrt[5]{\frac{b}{d}},$$

$$28. \sqrt{\frac{m}{n}} \cdot \sqrt[3]{\frac{n}{m}}, \sqrt[3]{\frac{q}{p}} \cdot \sqrt[4]{\frac{p}{q}}, \sqrt[4]{\frac{q}{p}} \cdot \sqrt[6]{\frac{p}{q}}, \sqrt[6]{\frac{x}{y}} \cdot \sqrt[9]{\frac{y}{x}}$$

29.
$$\sqrt[3]{\frac{2}{3}}$$
. $\sqrt{6}$, $\sqrt[3]{\frac{4}{3}}$. $\sqrt{\frac{3}{2}}$, $\sqrt{\frac{5}{12}}$. $\sqrt[3]{\frac{3}{10}}$, $\sqrt[3]{\frac{3}{8}}$. $\sqrt[4]{\frac{4}{3}}$

30.
$$\sqrt[n]{a}$$
. $\sqrt[n]{b}$, $\sqrt[n]{x}$. $\sqrt[n]{y}$, $\sqrt[n]{a}$. $\sqrt[nx]{b}$, $\sqrt[mx]{a}$. $\sqrt[nx]{b}$

31.
$$\sqrt[2n]{\mathbf{x}}$$
. $\sqrt[3n]{\mathbf{x}}$, $\sqrt[3]{\mathbf{y}}$, $\sqrt[2n]{\mathbf{y}}$, $\sqrt[3]{\mathbf{x}}$, $\sqrt[3n]{\mathbf{x}}$, $\sqrt[4]{\mathbf{d}}$. $\sqrt[6n]{\mathbf{d}}$

$$32. \frac{\sqrt{a}}{\sqrt[3]{a}}, \frac{\sqrt{b}}{\sqrt[4]{b}}, \frac{\sqrt{c}}{\sqrt[5]{c}}, \frac{\sqrt[4]{d}}{\sqrt[4]{d}} \quad 33. \frac{\sqrt[3]{x}}{\sqrt[4]{x}}, \frac{\sqrt[3]{y}}{\sqrt[4]{y}}, \frac{\sqrt[3]{m}}{\sqrt[4]{m}}, \frac{\sqrt[3]{n}}{\sqrt[4]{n}}$$

$$33. \frac{\sqrt[4]{a}}{\sqrt[5]{a}}, \frac{\sqrt[4]{b}}{\sqrt[4]{b}}, \frac{\sqrt[3]{c}}{\sqrt[4]{c}}, \frac{\sqrt[4]{d}}{\sqrt[4]{d}} \quad 35. \frac{\sqrt[3]{4}}{\sqrt[4]{2}}, \frac{\sqrt[3]{36}}{\sqrt[4]{6}}, \frac{\sqrt[3]{25}}{\sqrt[4]{5}}, \frac{\sqrt[3]{100}}{\sqrt[4]{10}}$$

$$36. \frac{\sqrt{8}}{\sqrt[3]{2}}, \frac{\sqrt{27}}{\sqrt[4]{9}}, \frac{\sqrt{64}}{\sqrt[4]{16}}, \frac{\sqrt{125}}{\sqrt[4]{25}} \quad 37. \frac{\sqrt[3]{4}}{\sqrt[4]{8}}, \frac{\sqrt[3]{16}}{\sqrt[4]{64}}, \frac{\sqrt[3]{36}}{\sqrt[4]{324}}, \frac{\sqrt[3]{81}}{\sqrt[4]{729}}$$

38. Was muß der Ausdruck To bedeuten, wenn man in der Rechnung nach den bisherigen Sähen auf einen solchen Ausdruck kommt? Wie werden darnach folgende Ausdrücke sich in ihrer einsachsten Form darstellen ohne negative Exponenten:

39.
$$\sqrt[n]{a}$$
, $\sqrt[n]{a}$, $\sqrt[n]{$

7. Wurgeln aus Wurgeln.

1.
$$\sqrt[3]{\sqrt[3]{a}}$$
, $\sqrt[3]{\sqrt[3]{b}}$, $\sqrt[4]{\sqrt[5]{c}}$, $\sqrt[3]{\sqrt[3]{d}}$
2. $\sqrt[3]{\sqrt{x^3}}$, $\sqrt[4]{\sqrt{y^4}}$, $\sqrt[5]{\sqrt[3]{x^{10}}}$, $\sqrt[3]{\sqrt[3]{y^{15}}}$

3. 1/1/2

4.1/1/2

5. 1/36,

6.18.

7. \$\square a^2, 8. \$\square 8, \$\square

9. 1/16

10. 4/4

11. ⁹/a³. 11'. ⁹/8x 12. ⁷/a

13. V a

17. x 7/

1, 1/96 1, 1/16

1, 1/44

1. 1/28

XIV. Das Ausziehen der Quadratwurzei.				
3. $\sqrt[3]{\sqrt{27}}$,	$\sqrt{\sqrt[3]{81}}$,	$\sqrt[3]{\sqrt{8}}$,	$\sqrt[3]{36}$	
$4. \sqrt[3]{\sqrt[4]{216}},$	√ ⁴ √ <u>₹/81</u> ,	$\sqrt[3]{\sqrt{512}}$,	$\sqrt[4]{\sqrt[3]{256}}$	
5. 1/36 ,	$\sqrt[4]{25}$,	√ 49,	1/64	
6. \$\sqrt{8},	⁶ √36,	$\sqrt[6]{27}$,	1/81	
7. ⁶ ⁄a ² ,	$\sqrt[6]{a^3}$,	⁸ √a ⁴ x ² ,	$\sqrt[4]{a^6x^6}$	
8. \$\sqrt{8},	$\sqrt[9]{27}$,	₹ 64,	₹ 125	
9. 1/16,	$\sqrt[12]{27}$,	12/81,	18/64	
10. 1/4,	10/36,	1/32,	10/243	
11. $\sqrt[q]{a^3}$,	$\sqrt[12]{b^8}$,	10/c5,	$\sqrt[p]{d^{12}}$	
$11'.\sqrt[9]{8x^6},$	½/a4b8,	$\sqrt[6]{9a^2b^4}$,	$\sqrt[8]{16a^{12}}$	
12. $\sqrt{a^{3/a}}, *)$	$\sqrt[3]{x\sqrt{x}}$,	$\sqrt{y}\sqrt{y}$,	V x 1/ y	
13. $\sqrt{a\sqrt{a\sqrt{a}}}$	$\sqrt{x\sqrt{x\sqrt{x}}}$,	$\sqrt[3]{a\sqrt[3]{b\sqrt[3]{c}}},$	$\sqrt[m]{\sqrt[n]{y^p/z}}$	
14. $\sqrt[n]{a \sqrt[n]{a}}$,	$\sqrt[3]{\overline{b^2}\sqrt[4]{b}},$	1/c1/c,	$\sqrt[4]{d\sqrt[5]{d^3}}$	
15. $\sqrt[6]{m\sqrt[5]{m}}$,	$\sqrt[5]{n\sqrt[3]{n^2}}$,	$\sqrt[5]{p^2\sqrt{p}}$,	$\sqrt[5]{q+\sqrt[3]{q^2}}$	
$16 \sqrt[7]{p\sqrt[5]{p^2}},$	$\sqrt[5]{q^{\frac{1}{q^3}}}$,	$\sqrt[5]{m+\sqrt{m^3}}$,	$\sqrt[5]{n^3 \sqrt[8]{n}}$	
17. x V x-1 V	\bar{x}^{-1} , $y \sqrt[3]{y^{-2}}$	$\sqrt{y^{-2}}$, a $\sqrt[4]{y}$	a-3-1/a-8	

XIV.

Das Ausziehen der Quadratwurzel.

A. Mus Bahlen.

	A. tens Ougien	DEN DO
1, 1/961	12. 1/484	13. 1/121
14. 1/169	$1_5. \sqrt{225}$	16. 1/529
17. 1/441	1 _s . $\sqrt{900}$	$1_9. \sqrt{625}$
1. $\sqrt{289}$	2. $\sqrt{361}$	2_{1} . $\sqrt{841}$
3. $\sqrt{1369}$	4. $\sqrt{1681}$	5. \square 3249

^{*)} Die Ausbrücke in 12.—17. sollen, wenn es möglich ift, so umgeformt werben, daß nur eine Wurzel vorkommt.

1. Vy Va Va Va

in√b one of the one

m / Vi Vi Vi Vi Vi Vi

36 VE 194' VE

nan in b ack komm issten Fon ...