Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Experimentelle Untersuchung der Kommutation mit besonderer Berücksichtigung der Änderung der Übergangsspannung und der Verteilung des Energieverlustes zwischen Kommutator und Bürste

Jordan, Friedrich Berlin, 1909

II. Versuchsmaschine

urn:nbn:de:bsz:31-274862

II. Versuchsmaschine.

Bei der Theorie der Stromwendung geht man von glatten Ankern aus, weil man da möglichst einfache und übersichtliche Verhältnisse hat.

Da die Versuche von Arnold lehren, daß es oft sehr schwierig wird, die Einflüsse der Nuten auf die Stromwendung von den Wirkungen der Kurzschlußströme selbst zu trennen und ihre Rückwirkungen aufeinander richtig zu übersehen, lag es nahe, für die beabsichtigten Untersuchungen eine Maschine mit glattem Anker zu nehmen. Obwohl, wie bemerkt, die Theorie ihren Ausgang von dieser Anordnung genommen hat, sind für sie die wirklichen Vorgänge ihrem zeitlichen Verlauf nach experimentell noch nicht aufgenommen worden. Man kann bei Benutzung einer Maschine mit glattem Anker hoffen, einen möglichst einfachen und durch sekundäre Einflüsse ungetrübten Verlauf der Stromwendung zu finden.

nu-

ld,

08

ten

en

les

ng

Da

m-

hr

les

bei

in-

en-

aß

ler

las

ch

en

3h.

eh-

of.

its

eit nk

ZII

le-

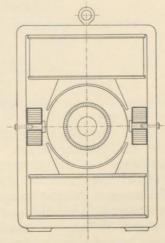


Fig. 1. Skizze der Versuchsmaschine.

Fig. 1 gibt eine Skizze der benutzten Maschine. Ihre Hauptdaten sind folgende:

Anker: Durchmesser D=260 mm, Eisenlänge l=220 mm ohne Luftschlitze, Eisenhöhe b=60 mm.

Wicklung: zweipolige Ringwicklung.

Leiterzahl N=224, Spulenzahl S=56, Windungszahl einer Spule w=4, Leiterabmessungen 3,1/3,7 ϕ .

Kommutator:

Durchmesser D = 150 mm, Lamellenzahl K = 56Isolation $\delta_i = 0.7 \text{ mm}$. Die Polschuhe sind abgeschrägt. Idealer Polbogen $\alpha_i \cong 0.7$.

Wendepole:

Querschnitt 20×160 mm, Polschuh 35×220 mm, Windungszahl pro Pol $w_w = 36$.

Die Maschine lief als fremderregter Nebenschlußgenerator.

III. Meßanordnung.

1. Schaltungsschema.

Im Grunde genommen ist die benützte Schaltung die gleiche wie die bei der Arbeit von Arnold.1) Diese war aber mit Rücksicht auf die Aufnahme der Kurven mit dem Kontaktgeber aufgebaut, während bei der vorliegenden Arbeit ausschließlich der Oszillograph benutzt wurde. Dieses wesentlich anders geartete Meßinstrument machte wieder seinem Charakter entsprechend einen anderen Aufbau der Versuchseinrichtungen nötig, um so mehr als nicht nur eine qualitative Würdigung der zu erhaltenden Oszillogramme, sondern auch quantitative Ausmessung beabsichtigt war. Der Gebrauch der Oszillographen zu solchen Zwecken ist nicht neu, aber doch ziemlich selten. Man wird allerdings auf eine so große Genauigkeit, wie sie direkt zeigende Instrumente besitzen, verzichten müssen, doch ist die erreichbare Genauigkeit immerhin befriedigend und ausreichend. Es wurde ein Oszillograph von Dudell benutzt, dessen schwingendes System eine Eigenschwingungszahl von etwa 10 000 Perioden in der Sekunde hat. Die Aufnahmen wurden auf besonders für solche Zwecke angefertigtes Bromsilberpapier gemacht, das auf eine rotierende Trommel gespannt wurde. Ungenauigkeiten durch Verziehen des Papiers beim Entwickeln und Wässern traten nicht auf. Der Stromverbrauch des Oszillographen ist höchstens 0,08 Amp. für vollen Ausschlag, dabei sind Selbstinduktionen und Kapazität sehr gering.

Den Nullpunkt hält das Instrument recht gut, doch sind die Ausschläge etwas von der Temperatur des zur Dämpfung benutzten Öles abhängig. Da sich diese nicht unter allen Umständen genau gleich halten läßt, so schien es wünschenswert, jedes einzelne Oszillo-

¹) Arbeiten aus dem elektrotechnischen Institut Karlsruhe, 1908—1909, S. 4 ff.