Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Resultate für den Maschinenbau

[Hauptband]

Redtenbacher, Ferdinand Mannheim, 1848

Wasserheizung

urn:nbn:de:bsz:31-282867

b) Dampfmenge in Kilg., welche stündlich zur Heizung erforderlich ist.

$$\frac{W}{650 - T}.$$

Gewöhnlich wird Dampf von einer Atmosphäre Spannung angewendet, dann ist die Dampfmenge

$$\frac{W}{550}$$

c) Stündlicher Verbrauch an Steinkohlen:

$$\frac{1}{6} \cdot \frac{W}{550}$$
.

d) Heizfläche des Dampfkessels:

$$\frac{1}{4} \cdot \frac{1}{6} \cdot \frac{W}{550}.$$

240.

Wasserheizung mit hoher Temperatur nach Perkins.

Diese Heizungen wurden bis jetzt nach folgenden praktischen Erfahrungsregeln eingerichtet.

- a) W Wärmemenge, welche stündlich zur Heizung des Raumes nothwendig ist.
- b) Totale Länge der sämmtlichen Wärmeröhren. . $=\frac{W}{118}$ Metre.
- c) Grösste Länge einer Wärmeröhre, gemessen von dem Austritt aus dem Ofen bis zum Wiedereintritt
- d) Anzahl der Circulationen. Die kleinste Anzahl der Circulationen wird gefunden, wenn man die totale Länge der Wärmeröhren durch 160 dividirt.
- e) Länge der Heizröhren, d. h. der Spirale, welche sich in dem Ofen befindet, um die Wärme des Brennstoffes aufzunehmen, gleich ¹/₅ bis ¹/_{4:5} von der Länge einer Wärmeröhre.

25

f) Verhältniss zwischen dem Volumen der Expan- sionsröhre und dem inneren Volumen einer	
Wärmeröhre	5.
g) Innerer Durchmesser der Spirale und der Wärme-	0.012m.
h) Aeusserer Durchmesser dieser Köhren	0.0065m.
k) Innerer Durchmesser einer Expansionsrohre	0.0500m.
1) Temperatur des circulirenden Wassers bei dem Eintritt in die Spirale	60°. 150° bis 200°.
m) Brennstoffverbrauch in einer Stunde in Kilg.	
Holzfenerung = W bis -	W

Holzleuerung 1500

Steinkohlenfeuerung

Gasbeleuchtung.

Beleuchtung mit Steinkohlengas.

241.

Lichtstärke der Kerzen, Lampen und Gasbrenner.

- a) Eine Talgkerze von 1/6 Pfund Gewicht brennt durch 9.5 Stunden, und gibt so viel Licht, als ein Gasbrenner, welcher per 1 Stunde 14 Litres Steinkohlengas verbrennt.
- b) Eine gemeine Lampe mit plattem Docht verbrennt per 1 Stunde 13 Grammes Oel, gibt eine Lichtstärke von 1.13 Talgkerzen und wird durch einen Gasbrenner ersetzt, welcher per 1 Stunde 16 Litres Gas verbrennt.
- c) Eine Wachskerze (5 auf 1 Pfund) gibt eine Lichtstärke von 1.1 Talgkerzen und wird durch einen Gasbrenner ersetzt, welcher per 1 Stunde 16 Litres Gas verbrennt.
- d) Eine Argand'sche Lampe, welche per 1 Stunde 30 Grammes Oel verbrennt, gibt eine Lichtstärke von 4 Talgkerzen und wird durch