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294 XXXVVI. Der binomiſche Satz .

42 . Welche Potenzenprodukte haben in der Entwickelung von

( a＋ b ) s gleiche Koefficienten mit a : b ' und albs ' ? welche in der

Entwickelung von ( a ＋ b) 1s mit abbit , a “ b ' und aösbo , und wie
heißen die zugehörigen Koefficienten ?

43 . Welche Potenz von „ hat in der Entwickelung von ( 1 ＋ 8 ) 1

mit &4 und welche mit Xs gleichen Koefficienten ? welche in ( I＋2 ) . 1
mit xö und mit Xs, und wie heißen die zugehörigen Koefficienten ?

44 . Wenn A der 9. Binomialkoefficient der Entwickelung von

( a ＋T bhn iſt , wie heißt dann der 10 . Koefficient ?
45 . Wenn A, B, C, D bezüglich der 7te , der 13te , der 20öſte ,

der 29ſte Koefficient der 16ten , der 20ſten , der 50ſten , der 58ſten

Potenz eines Binoms ſind , wie heißt dann in jedem Falle der nächſt⸗

folgende Koefficient ?
46 . Welches Geſetz gilt für die Koefficienten in der Entwickelung

der nten Potenz eines Binoms , ſo lange n eine poſitive ganze Zahl ?
47 . Bei einer ungeraden Potenz des Binoms kommen alle Koef⸗

ficienten paarweiſe vor , bei einer geraden Potenz der mittlere nur

einmal . Weshalb ?
48 . Die wievielten Koefficienten ſind die beiden größten in den

Entwickelungen von ( a b ) s und ( a b ) ts , und wie heißen dieſelben ?

49 . Die wievielten Koefficienten ſind in den Entwickelungen von

( a ＋bh ) to und ( a＋b ) t “ die größten , und wie heißen dieſelben ?

50 . Die wievielten Koefficienten ſind die mittleren in den Entwicke⸗

lungen von ( a ＋ b ) en - , ( a b) 2u1 , ( a＋ bhn und ( a Kb ) 2u - 2 ,

und wie heißen dieſelben ?
51 . Wenn n1, u3, nz u. ſ. w. die Binomialkoefficienten für die

nte Potenz eines Binoms ſind , ſo iſt immer bei einer ähnlichen Be⸗

zeichnung für die ( n＋ 1) te Potenz : ne ＋ n . 1 ( n ＋ I ) r . Wie

heißt dieſer Satz in Worten , und wie wird er bewieſen?
52 . Wie groß iſt demnach die Summe des 7. und 8. Binomial⸗

koefficienten der 13 . Potenz und wie groß iſt die des 5. und 6. der

16. Potenz ?
53 . Wie groß iſt die Summe aller Koefficienten in den Ent⸗

wickelungen von ( a ＋ b) ,ꝯ ( a ＋ b) to , ( a T b ) n ?

54 . Desgleichen von ( a — b) s , ( a — b ) t , ( a — b ) n ?

54 ] . Was folgt aus 53 . und 54 . für die Summe der geraden

und die der ungeraden Binomialkoefficienten irgend einer Potenz , und

wie groß iſt darnach die Summe aller geraden und die aller unge⸗

raden Kombinationen für n Elemente ?

55 . Entwickele ( X — 25/ , ( 3X ＋y)85, ( 2X ＋3505 , 5 - 2t ) é .
56 . Desgleichen ( 1＋x2 ) 6 , ( 1 — X), ( I＋X ) 5 , ( K — ο .1

„ 55 4 I5 1 2 J7
97 . Desgleichen X ＋ 2 6 37) „

(
2

1 *

bJ7 ( 21
Desaleiche — ( — — — 1258 . Desgleichen E a 7 , b
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2RX15
das 10 . Glied in der von (En

— 0 2

8 8 3 xX 2aN960 . Wie heißt das 5. Glied in der Entwickelung von 5
14

„ und welche
2 a⁊ 3

wie das 9. Glied in der Entwickelung von 5 22)
Glieder haben in jedem Falle denſelben Koefficienten , wie die verlangten
und wie heißen ſie ?

61 . Wie heißen der Koefficient von Xxt in der Entwickelung von
113 N— — „ die Glieder mit Xund x16 in ( das Glied(2
* 2aR¹³

mit x in ( 2m 85 2

5 862 . Wie heißt das Glied mit a2 in E das Glied
115 2 2

2
2

Entwickele und berechne ( auf 6 Decimalſtellen ) folgende Ausdrücke
mit Hilfe des binomiſchen Satzes :

63 . /a 4. J/b) 07/4 —bhe, ( 1＋ν ˙jEνν
64 . ( a＋bi ) ꝰ ＋ ( a —bi ) s , bihih
65 . (‚1 ＋ ＋ i ) , d＋οννõV h⸗
66 . ( 1 ＋T i ) te — ( 1 —i ) t0 , ( Ii ) tt —- ( 1 — ihn
67 . 6＋17ον ＋ν• 63 - i/5 ) , ( 3＋7175˙ — 3750
68 . ( 1＋i / 30 ＋ ( 1 —i3 ) , 6＋1/0 ( 1 - 1/3 ) 6
69 . ( 2 ＋ 3i ) ＋ ( 2 — 3i ) e, i＋ 3 ) ＋ (2 ＋ 3005
70 . ( 3 ＋ 2i ) ＋ ( 3 — 2i ) , ( 3 ＋2i ) 3 — 21 )
71 . 4＋ 30 ＋ ( 4 — 3i ) , (4½J 3y6 — ( 4 —3505
72 . 1,110 1,022⁰ 1,0032² 1,00072
73 . 0,95 0,9815 0,9972⁰ 0,99955⁰
— 91N1⁰ 579N11 51N¹² 299 18
74. 5 ( 15 ( 0

33IINe 83N⁷ 5658 8725 . (ã) 6 6
76 . Beweiſe , daß der binomiſche Satz auch für ( 1 ＋ Do gilt .
77 . Desgleichen für ( 1 ＋ X) —i und ( 1 . * D 2.
78 . Wie unterſcheiden ſich dieſe Entwickelungen weſentlich von den

vorhergehenden ?
79 . Wie beweiſt man allgemein , daß der binomiſche Satz auch

für ganze negative Exponenten anwendbar iſt ?



ſein muß :

ꝙ 115 q) r

ſetzt in der

„ dann d —1 ſtatt q, mul⸗

und 4
95 . raus Pro zweier Binomialreihen für

wieder eine Binomialreihe für dendie Exponenten p und
Exponenten p＋g .
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Setze in folgenden Ausdrücken X ＋ h ſtatt x, entwickele nach h

und gieb den Faktor von h an.
115 . X4 ＋E X ＋E X ＋ X ＋ 1 xio X ＋ X — 7

116 . axn ＋ bxY

10117 4 5˙ *

3 4 5
118 . 55 lu

5953535 . . .
119. n xn mR

120 . ( a＋ X ) 5 —( b- ( ax ＋ I ) m —( a— K )

( a — bz ) ut

1120 — —122
( 3 — 4 ) 5

123 5 ＋. 3R
3 5 3xR

＋2 ) 2
24

124. 6(03 — 5xk2) 5

12⁵ 3E

Ausdrücke , welche X enthalten , erſcheinen bisweilen für einen Wert
0 5 5

von x unter der Form § . Dieſer Quotient iſt unbeſtimmt . Um den

wahren Wert desſelben zu ermitteln , ſetzt man , wenn ader fragliche
Wert von &iſt , a ＋ h ſtatt x , entwickelt Zähler und Nenner nach

Potenzen von h und läßt die Glieder mit he fort . Folgende Quotienten

erſcheinen für den in Klammern beigeſetzten Wert von X in unbe⸗

ſtimmter Form ; ſuche auf dem angegebenen Wege den wahren Wert

derſelben .
1

6126 .
1 [ 11
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Wenn man in einem von X abhängigen Ausdruck X ＋ h für x
ſubſtituiert , nach

Per
von h entwickelt , den Koefficienten von

h ſetzt , aus der ſo erhaltenen Gleichung den Wert von X be⸗
ſtimmt , ſo wird für dieſen der gegebene Ausdruck ein Maximum oder
Minimum . Was von beiden eintritt , überſieht man in den meiſten
Fällen leicht . “) — Gieb hiernach an, für welche Werte von X die

folgenden Ausdrücke ein Maximum oder ein Minimum werden , was
von beiden eintritt , und wie groß das Maximum oder Minimum des

gegebenen Ausdruckes für den gefundenen Wert von X wird .

132 . X1 — 108 x* ＋ 244 133 . XS — 6aõx ＋T 4as

134 . ( aꝛ — x5 ) ( bꝛ — K2) 135 . ( a — x5) ( b — X )

136 . 5 . 12 *—K 137 . x5 6xK2 ＋ N&X＋E1

9 4 x 7 — xX X — 3

140 . 111 *

XXNVII .

Von den Gleichungen höheren Grades im allgemeinen .

1. Welches iſt die allgemeine Form einer Gleichung des 3. Grades ?
2. Welches iſt die allgemeine Form einer Gleichung des 4. Grades ?
3. Welches iſt die allgemeine Form einer Gleichung des n. Grades ?
4. Wonach iſt der Grad einer Gleichung zu beurteilen ?
5. Schreibe ſechs möglichſt verſchiedene Gleichungen des 3. Gra⸗

des auf .
6
7.

Desgleichen acht möglichſt verſchiedene Gleichungen des 4. Grades .
Wie nennt man die Werte der Unbekannten , welche der Glei⸗

chung *gen ?
8. Welchen Faktor muß die linke Seite einer geordneten auf 0

Gleichung haben , wenn m eine Wurzel der Gleichung iſt ?

( Beweis ! )
9. Wie muß demnach eine Gleichung in ihrer einfachſten Form

heißen , welche die Wurzeln m, n und p hat ?
10 . Wie heißen die Gleichungen, welche folgende Wurzeln haben ?

1 2 , 3 2

3) 2, 3, — 5 4) 3, —
5

5) 7, ＋ /5 , — 75 6) 2, — 3 , — — 3

) Will man das durch Rechnung darthun , ſo muß man auch den Koeffi⸗
cienten von he ſuchen . Iſt dieſer für den gefundenen Wert von x negativ ,
ſo wird der Audbruck ein Maximum , iſt er poſitiv , ein Minimum . Verſchwindet
der Koefficient von he ebenfalls , ſo muß auch der von he verſchwinden und es
kommt auf das Zeichen des Koefftcienten von h“ an.
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