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XI. Potenzen mit ganzen poſitiven Exponenten .

über di Rechnung mit Potenzen gelten folgende fünf Sät
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folgende ſehr oft gebrauchte Formeln ſind zu merken ( und
zu beweiſen ) :
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ganzen poſitiven Exponenten
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XI. Potenzen mit ganzen poſitiven Exponenten . ⸗
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XI. Potenzen mit ganzen poſitiven Exponenten .
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Potenzen mit ganzer

2021 . 1 Xx ＋ R* ＋ X 8 XI＋ X＋

2 „

2025, 1 ＋ 2 * ＋L 3½ ＋ 48 ＋E Ox ＋E 68 —
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2024. . 1 — 2R* 3u2 — 4X ＋ 5 * — 6x ＋E·

Berechne die Summen folgender unendlichen Reihen für die an⸗

gegebenen Werte von X, die der erſten ſechs auf ſieben , die der letzten
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5¹Potenzen mit ganzen negativen Exponenten .

2045 . Welche Werte haben die dem tetradiſchen Syſtem ange⸗

hörigen Zahlen 13 , 123, 300 , 333 , 10232

2046 . Desgleichen die dem dyadiſchen Syſtem angehörigen Zah⸗

len 11 , 111 , 1011 , 1001001 , 10111012

XII .

Potenzen mit ganzen negativen Erponenten .

Wenn man die Reihen

a a a a a a a a 4 2

a⁴ 3³ 2² 45
35 deren entſprechende Glieder einander gleich ſind , nach demſelben Bil⸗

dungsgeſetzs ) weiter führt , ſo erhält man

1
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Hat man daher einmal das Zeichen a “ für aaaa , das Zeichen as für

aaa u. ſ. w. eingeführt , ſo wird es jedenfalls vorteilhaft ſein , auch

die Zeichen ab, a —1, 4 —2 u. ſ. w. einzuführen , damit man nicht erſt

jedesmal zu unterſuchen hat , ob der Exponent poſitiv iſt . Dann kann

man aber , falls man nicht eine große Konfuſion in die Rechnung

bringen will , dieſen Zeichen konſequenter Weiſe keine andere Bedeutung
93 1 1 1

beilegen , als as muß 1, a muß a — muß a oder 42
2

1

zas
oder a u. ſ. w. bedeutenn⸗ ) . Es muß demnach , falls

die Rechnung auf den Exponenten 0 oder einen negativen Exponenten
ulen führt , ſein

muß

33
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n 612 In
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Drücke dieſe Formeln in Worten aus .

*) In der Reihe oben entſteht das folgende Glied aus dem vorhergehenden
durch Diviſion mit a, in der zweiten dadurch , daß man den Exponenten um 1

vermindert .
an) Von einem Beweiſe kann hier nicht die Rede ſein . Es iſt nur eine

Ausdehnung der Bezeichnung , welche auf Potenzen mit negativen Exponenten
führt , wie man das Zahlenſyſtem über die Einer hinaus fortſetzt und auf Deci⸗ ö
malſtellen kommt , oder wie man ſich die poſitiven Zahlen über Null hinaus
abnehmend denkt und die negativen Zahlen erhält .
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