Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Beitrag zur Kenntnis der Reaktionsenergie bei der Vereinigung von Jod und Wasserstoff

Gottlob, Harry

1906

§13. Die Dolezaleksche Regel angewandt auf die ausgeführten Bestimmungen

urn:nbn:de:bsz:31-276016

Vorgelegt zur Absorption	Jodkalium.
Druck 745 mm.	
Temperat. 23,1° C.	
Gemessenes Volumen	27340 ccm.
Volumen red. (0º 760 mm)	24713 ccm.
Gefunden JH	0,6 ccm ¹ / ₁₀₀ Na OH.
Volumen JH	0,1344 ccm.
Gefunden J ₂	11,2 ccm 1/100 Na2S2O3
Volumen J ₂	1,254 ccm.
Partialdruck JH	f 0,0041 mm.
	$0.53 \cdot 10^{-5}$ Atm.
Partialdruck J ₂	f 0,038 mm.
	5,04 · 10 ⁻⁵ Atm.

§ 13. Die Dolezaleksche Regel angewandt auf die ausgeführten Bestimmungen.

Berechnen wir nach der früher angeführten Gesetzmäßigkeit

$$\log\,\frac{p}{p_1}\!=\,a\,\log\,\frac{x}{x_1}$$

den Faktor a aus den Bestimmungen des Jodwasserstoffdampfdruckes der verdünntesten und der konzentriertesten Säure, so erhalten wir

$$\log \frac{0,10}{0,00464} = a \log \frac{0,1513}{0,07305}$$

daraus ergibt sich für a der schon früher benutzte Wert von 4,2 Berechnen wir mit diesem Wert für a den Dampfdruck der mittleren Jodwasserstoffsäure

$$\log \frac{p}{0,00464} = 4.2 \log \frac{0,1095}{0,07305}$$

so folgt

$$p = 0.025 \text{ mm}$$

in befriedigender Übereinstimmung mit den Werten, die für jodhaltige Jodwasserstoffsäure von der Normalität 4,96 gefunden wurden.

Daß die Tensionsabnahme des Jodwasserstoffdampfes über der normalen Säure, welche durch den J₂-Zusatz bedingt ist, noch vernachlässigt werden darf, folgt aus der Übereinstimmung der Ergebnisse für jodhaltige und jodfreie Jodwasserstoffsäure von der Normalität 3,5.