Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Zur Theorie der Gerbung

Adler, Josef 1908

Anhang

<u>urn:nbn:de:bsz:31-274365</u>

Anhang.

Versuche über die Adsorption von Zuckerarten durch Blutkohle.

Zur Ausführung der folgenden Versuche hat die reinste Blutkohle von Merck ("mit Säure gereinigt") gedient, ohne dass irgend welche Reinigung oder Wasserentziehung derselben vorgenommen wurde. Man achtete nur stets darauf, dass dasselbe Ausgangsmaterial zur Anwendung kam, was sich durch Verteilung desselben in gut verschlossene Flaschen, die erst vor einer Versuchsreihe geöffnet wurden, durchführen liess. Die Wägungen für je eine Versuchsreihe wurden mit einem Male ausgeführt. Die Zuckerarten, ausser Saccharose, waren Merck's Präparate auch ohne spezielle Reinigung, nur wurde die Lösung, wenn sie gefärbt war, wodurch die Polarisation gestört wird, im vornhinein mit etwas Blutkohle entfärbt.

Bei der Filtration wurden wiederum keine speziellen Massnahmen vorgenommen, da von den zwei in Betracht kommenden Fehlerquellen: Temperaturveränderung und Adsorption durch Filter, der erste eine nicht bemerkenswerte Rolle spielt; um auch den zweiten zu bestimmen, wurde ein Versuch vorgenommen:

 $75\,\mathrm{ccm}$ einer polarisierten $\frac{\mathrm{N}}{10}$ Rohrzuckerlösung wurden durch 10 Filter durchgelassen; bei nachheriger Polarisation zeigte diese Lösung keine Abnahme des Drehungswinkels. Diese Adsorption liegt also unterhalb der Grenzen der Beobachtungsfehler.

Ein weiterer Versuch wurde angestellt, um zu bestimmen, ob die Kohle nicht vielleicht katalytisch Oxydation hervorruft. Dazu wurde durch einen Kolben sofort nach dem Hineinbringen der zu untersuchenden Substanzen ein H2-Strom 4 Stunden, also die ganze Versuchszeit lang, hindurchgelassen und die Abnahme des Drehungswinkels mit der einer zweiten Lösung ohne H2-Strom verglichen. Die Drehung war identisch (innerhalb der Versuchsfehler).

Die ersten Versuche galten der Reaktionsgeschwindigkeit.

Versuch I. Reaktionsgeschwindigkeit.

Stocke Ad Int. 2	5 gr Zucker in	5 gr Zucker in	17,1 gr Zucker in
	100 cem Lösung	100 cem Lösung	100 ccm Lösung
	mit 1 gr Kohle	mit 5 gr Kohle	mit 5 gr Kohle
Urspr. Drehung Drehung n. 30 Min. , , 1 Std. , , 3 ,, , , 30 ,, , , 4 ,, b. H ₂ -Strom	6,61 ° 6,29 ° 6,28 ° 6,28 ° 6,26 ° (52 St.) 6,31 °	6,57° 4,98° 4,94° 4,92° 4,92°	22,90 ° 20,94 ° 20,95 ° 20,88 ° 20,89 °

Das Gleichgewicht ist also nach 3 Stunden eingetreten; die weiteren Messungen sind daher nach 4-stündiger Einwirkungsdauer vorgenommen worden.

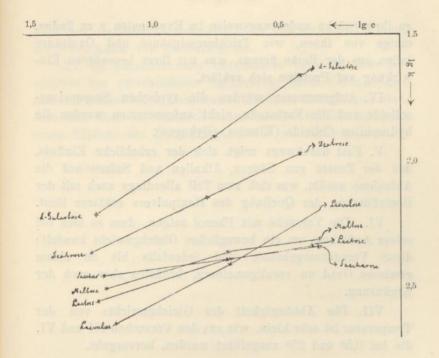
Versuch II. Konzentration ungefähr $\frac{N}{2}$.

Zuckerart	Urspr. Drehung	nach d.	Abn. des Drehgs winkels		gr in 100 ccm urspr. L.	Ad- sorb. in gr	Adsorb. Menge in %
Saccharose Maltose Dextrose Laevulose Lactose d.Galactose	46,56 ° 9,54 ° 16,40 ° 18,69 °	21,16° 42,05° 7,50° 14,44° 16,94° 11,53°	$4,51^{\circ}$ $2,04^{\circ}$ $1,96^{\circ}$ $1,75^{\circ}$	0,511 0,497 0,504 0,502 0,493 0,613	9,037 17,77	1,735 1,941	9,69 21,38 11,94 9,36

Versuch III. Konzentraton ungefähr $\frac{|N|}{4}$.

Zuckerart	Urspr. Drehung		Abn. d. Drehgs winkels	Norm. absolut d. urspr. Lösung	gr in 100 ccm urspr. L.	Ad- sorb. in gr	Adsorb. Menge in ⁰ / ₀
Saccharose Maltose Dextrose Laevulose Lactose d.Galactose	23,28° 4,63° 8,20° 9,34°	9,70° 19,21° 3,24° 6,91° 7,79° 5,31°	1,91 ° 4,07 ° 1,39 ° 1,29 ° 1,55 ° 3,70 °	0,255 0,248 0,244 0,251 0,247 0,306	8,74 8,945 4,403 4,518 8,885 5,520	1,320 0,709 1,475	17,5 30,0 15,7 16,6

Versuch IV. Konzentration ungefähr No.


Zuckerart	Urspr. Drehung	Drehung nach d. Adsorp.	Drehgs	Norm. absolut d. urspr. Lösung	gr. in 100 ccm urspr. L.	Ad- sorb. in gr	Adsorb Menge in 0/0
Raffinose Saccharose	12,41° 4,58°	8,73° 2,98°	3,68° 1,60°	0,101	3,447	_ 1.204	29,4 34,9
Maltose Dextrose	9,320	5,85° 1,13°	3,47° 0,83°	0,099 0,103	3,581 1,864	1,132	37,2
Laevulose Lactose	3,18° 3,74°	2,44° 2,39°	0.74° 1.35°	0,097	1,752 3,554	0,408	
d.Galactose	3,600	1,810	1,790	0,123		1,098	40,7

Die oberen Versuchsreihen zeigen eine Variation in der Konzentration der Lösungen. Es wurde noch eine Versuchsreihe mit einer Konzentration N/4 und einer Kohlenmenge 3,00 gr ausgeführt.

Versuch V. Konzentration ungefähr Kohlenmenge 3gr.

UISPI.	nach d.	Drehgs	Norm. absolut d. urspr. Lösung	gr in 100 ccm urspr. L.	Ad- sorb. in gr	Adsorb. Menge in ⁰ / ₀
22,450	19,990	2,460	0,246 0,238 0,243	8,569	0,939	10,5
	11,240 22,450 4,630	Drehung nach d. Adsorp. 11,24 0 10,15 0 22,45 0 19,99 0	11,24 ° 10,15 ° 1,09 ° 22,45 ° 19,99 ° 2,46 ° 4,63 ° 3,61 ° 1,02 °	Orehung Drehung nach d. Adsorp. Drehgs. winkels absolut d. urspr. Lösung 11,24° 10,15° 1,09° 0,246° 22,45° 19,99° 2,46° 0,238° 4,63° 3,61° 1,02° 0,243°	Orehung Drehung nach d. Adsorp. Drehgs winkels absolut d. urspr. Lösung 100 ccm urspr. L. 11,24° 10,15° 1,09° 0,246 8,403 22,45° 19,99° 2,46° 0,238 8,569 4,63° 3,61° 1,02° 0,243 4,379	Orehung Drehung nach d. Adsorp. Drehgs. winkels absolut d. urspr. Lösung 100 ccm urspr. L. in gr 11,24 ° 10,15 ° 1,09 ° 0,246 ° 8,403 ° 0,815 ° 22,45 ° 19,99 ° 2,46 ° 0,238 ° 8,569 ° 0,939 ° 4,63 ° 3,61 ° 1,02 ° 0,243 ° 4,379 ° 0,964 °

Die folgenden Kurven sind entstanden, indem man auf der Ordinate die Werte für lga auf der Abszisse die für lgc aufgetragen hat. Es zeigt sich ohne Zweifel eine Aehnlichkeit zwischen den Monosen untereinander und Biosen untereinander. Andererseits lassen aber auch diese in der Konstitution so ähnliche Stoffe keinen Zweifel darüber. dass das konstitutive Moment den wesentlichen Einfluss auf · die Adsorption nimmt, ein Ergebnis, das jedenfalls auch für die Gerberei von grosser Bedeutung ist.

III. Schluss: Experimentelle Ergebnisse.

Aus den Versuchen folgt:

I. Die Aufnahme des gelösten Stoffes durch Hautpulver wurde beobachtet bei: Harnstoff, Phenolen, Formaldehyd, Säuren, Salzen, Suspensionscolloiden: Gold, Arsensulfid, Berlinerblau und Farbstoffen.

II. Negative Adsorption, d. h. eine Konzentrationserhöhung durch Zusatz von Hautpulver wurde beobachtet in zwei Fällen: Zucker, Eiweiss.

III. Die chemische Natur der gelösten Stoffe spielt bei ihrer Aufnahme eine sehr erhebliche Rolle, und zwar sowohl absolut wie relativ, d. h. also auch für den Verlauf der Aufnahmekurve. Bei den Phenolen steigt z. B. absolut in verdünnter Lösung die Menge des Aufgenommenen mit der Anzahl der Hydroxylgruppen, bei höherer Konzentration ist es dagegen umgekehrt. Bei den Säuren ist eine Beziehung