Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Gesammelte Werke

Untersuchungen über sie Ausbreitung der elektrischen Kraft

Hertz, Heinrich Vaduz/Liechtenstein, 1984

8. Ueber elektrodynamische Wellen im Luftraume und deren Reflexion

urn:nbn:de:bsz:31-269600

8. Ueber elektrodynamische Wellen im Luftraume und deren Reflexion.

(Wiedemanns Ann. 34. p. 610. 1888.)

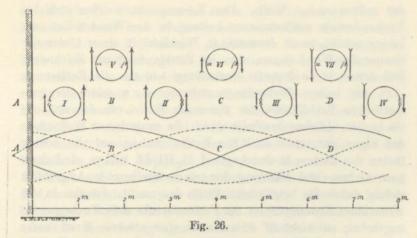
Vor kurzem habe ich versucht, durch das Experiment zu beweisen, 1) dass die Inductionswirkung sich mit endlicher Geschwindigkeit durch den Luftraum ausbreitet. Die Schlüsse, auf welche jener Beweis gegründet wurde, scheinen mir nun auch vollkommen bündig, allein dieselben sind in verwickelter Weise aus verwickelten Thatsachen hergeleitet und sind daher vielleicht nicht eben einleuchtend für denjenigen, welcher nicht der ganzen Anschauungsweise von vornherein ein günstiges Vorurtheil entgegenträgt. In dieser Hinsicht wird jener Beweis passend ergänzt durch die Betrachtung der in Folgendem mitzutheilenden Erscheinungen, welche die wellenförmige Ausbreitung der Induction durch den Luftraum fast greifbar vor die Augen führen. Auch gestatten diese neuen Erscheinungen eine unmittelbare Messung der Wellenlänge in der Luft. Dass sich für denselben Apparat die so direct gemessene Länge von der früher indirect bestimmten nur wenig unterscheidet, wird als Zeichen dienen können, dass auch schon der frühere Beweis im wesentlichen richtig geführt war.

Vielfach hatte ich in den Versuchen, in welchen ich die Wirkung einer geradlinigen Schwingung auf einen secundären Leiter prüfte, Erscheinungen beobachtet, welche eine Reflexion der Inductionswirkung von den Wänden des Gebäudes anzudeuten schienen. So traten häufig auch in solchen Lagen des secundären Kreises schwache Funken auf, in welchen dies schon aus geometrischen Gründen der Symmetrie durch eine unmittel-

¹⁾ Siehe No. 7, p. 115.

bare Wirkung durchaus nicht geschehen konnte, und zwar vorzugsweise in der Nähe fester Wände. Besonders aber trat mir mit Beständigkeit folgende Erscheinung entgegen: Prüfte ich die Funken im secundären Leiter in sehr grossen Entfernungen vom primären Leiter, woselbst die Funken schon äusserst schwach waren, so bemerkte ich, dass in den meisten Lagen des secundären Kreises die Funken wieder sehr deutlich zunahmen, wenn ich mich einer festen Wand näherte, um dann in unmittelbarer Nähe derselben fast plötzlich zu verschwinden. Die einfachste Erklärung schien mir diese, anzunehmen, dass die sich wellenförmig ausbreitende Inductionswirkung von den Wänden reflectirt würde, und dass die zurückgeworfenen Wellen die ankommenden in gewissen Entfernungen verstärkten, in anderen schwächten, indem durch die Interferenz beider stehende Wellen im Luftraum sich ausbildeten. Indem ich die Bedingungen für eine Reflexion mehr und mehr günstig gestaltete, trat die Erscheinung mehr und mehr hervor, und die gegebene Deutung wurde immer wahrscheinlicher. Ich halte mich indess bei den unvollkommenen Versuchen nicht auf, sondern gehe unmittelbar zur Beschreibung der Hauptversuche über.

Der Hörsaal der Physik, in welchem diese Versuche angestellt wurden, ist nahe an 15 m lang, 14 m breit, 6 m hoch. Parallel mit den beiden Längswänden ziehen sich indessen zwei Reihen eiserner Säulen hin, deren Gesammtheit sich für die elektrodynamische Wirkung wohl schon mehr wie eine feste Wand verhält, sodass die ausserhalb derselben gelegenen Theile des Raumes nicht mitgerechnet werden können. Es blieb daher für die Versuche der Mittelraum von 15 m Länge, 8,5 m Breite, 6 m Höhe. Aus diesem Raum liess ich die hängenden Theile der Gasleitungen und die metallenen Kronleuchter entfernen, sodass er nichts enthielt als die hölzernen Tische und Bänke, welche nicht wohl entfernt werden konnten, von denen aber eine schädliche Wirkung weder zu erwarten war, noch sich geltend machte. Die eine der Stirnwände des Raumes, an welcher die Reflexion stattfinden sollte, war eine von zwei Thüröffnungen durchbrochene massive Sandsteinwand; zahlreiche Gasleitungen zogen sich an derselben hin. Um der Wand noch mehr den Charakter einer leitenden Fläche zu ertheilen, wurde an derselben ein Zinkblech von 4 m Höhe und 2 m Breite befestigt; dasselbe wurde durch Drähte mit den Gasleitungen und einer nahen Wasserleitung in Verbindung gesetzt, insbesondere wurde Sorge getragen, dass von dem oberen und unteren Ende des Blochs die sich daselbst etwa ansammelnde Elektricität möglichst frei abfliessen konnte.


Gegenüber der Mitte dieser Wand in 13 m Abstand von derselben, also in 2 m Abstand von der Gegenwand, wurde der primäre Leiter aufgestellt. Es war derselbe Leiter, welcher bei den früheren Versuchen über die Ausbreitungsgeschwindigkeit gedient hatte. Die Richtung des leitenden Drahtes wurde jetzt vertical gestellt, es schwankten dann auch die in Betracht kommenden Kräfte in verticaler Richtung auf und ab. Der Mittelpunkt des primären Leiters lag 2,5 m über dem ebenen Fussboden; in gleicher Entfernung über demselben wurden auch die Beobachtungen angestellt, indem in entsprechender Höhe aus Tischen und Brettern ein Gang für den Beobachter hergestellt war. Eine von dem Mittelpunkt des primären Leiters auf die spiegelnde Fläche gefällte Senkrechte nennen wir das Einfallsloth. Unsere Versuche beschränken sich auf die Nähe desselben; Versuche bei einem grösseren Einfallswinkel würden sich compliciren durch die Rücksicht, welche auf die verschiedene Polarisation der Wellen zu nehmen wäre. Eine Verticalebene, welche dem Einfallsloth parallel liegt, ist in unseren Versuchen als eine Schwingungsebene, eine zum Einfallsloth senkrechte Ebene als eine Wellenebene zu bezeichnen.

Der secundäre Leiter war der ebenfalls schon früher benutzte Kreis von 35 cm Radius. Er war in sich selbst drehbar auf einer Axe befestigt, welche durch seinen Mittelpunkt ging und senkrecht auf seiner Ebene stand. Diese Axe lag in den Versuchen horizontal; sie war in einem Holzgestell so befestigt, dass sie mitsammt dem Kreise um eine verticale Axe gedreht werden konnte. Es genügt freilich für die meisten Versuche, dass der Beobachter den in seinem isolirenden Holzgestell befestigten Kreis in der Hand halte und ihn so auf das bequemste in die verschiedenen Lagen bringe. Allein da der Körper des Beobachters immer ein wenig Einfluss hat, müssen die so erhaltenen Beobachtungen durch Beobachtungen aus grösserem Abstand controlirt werden. Die Funken sind auch kräftig genug, um im Dunkeln aus einer Entfernung von mehreren Metern ge-

sehen zu werden, im hellen Zimmer ist freilich von den zu beschreibenden Erscheinungen auch aus der Nähe so gut wie nichts wahrzunehmen.

Die Erscheinung, welche uns nach solchen Zurüstungen am auffälligsten entgegentritt, ist die folgende: Wir bringen den Mittelpunkt unseres secundären Kreises in das Einfallsloth, die Ebene desselben in die Schwingungsebene und kehren nun die Funkenstrecke einmal der reflectirenden Wand zu, das andere Mal von derselben ab. Im allgemeinen fallen in beiden Lagen die Funken sehr verschieden aus. Stellen wir den Versuch an in etwa 0,8 m Entfernung von der Wand, so sind die Funken weit kräftiger, wenn die Funkenstrecke der Wand zugekehrt ist. Wir können die Länge der Funken so reguliren, dass ein beständiger Funkenstrom übergeht, wenn die Funkenstrecke der Wand zugekehrt ist, und dass durchaus kein Funke übergeht in der entgegengesetzten Lage. Wiederholen wir den Versuch in 3 m Entfernung von der Wand, so finden wir umgekehrt einen beständigen Funkenstrom in der von der Wand abgekehrten, und Funkenlosigkeit in der der Wand zugekehrten Funkenstrecke. Entfernen wir uns weiter bis auf 5,5 m, so hat eine neue Umkehr stattgefunden, der Funken auf der Seite der Wand ist im Vortheil gegenüber dem Funken auf der anderen Seite. Endlich in 8 m Entfernung von der Wand finden wir, dass sich ein abermaliger Wechsel vollzogen hat, der Funke ist stärker auf der von der Wand abgekehrten Seite, doch ist der Unterschied nicht mehr so bedeutend. Auch findet eine weitere Umkehr nicht statt, die überwiegende Stärke der directen Wirkung und die in der Nähe der primären Schwingung stattfindenden complicirten Kräfte verhindern dies. Unsere Figur, in welcher der Maassstab die Entfernungen von der Wand angiebt, stellt in I, II, III, IV den secundären Kreis in denjenigen Lagen dar, in welchen die Entwickelung der Funken die stärkere war. Der alternirende Charakter der Zustände des Raumes tritt deutlich hervor.

In den Entfernungen, welche zwischen den erwähnten liegen, werden die beiden in Betracht kommenden Funken gleich gross, und auch in unmittelbarer Nachbarschaft der Wand nimmt der Unterschied der Funken wieder ab. Wir können also diese Punkte, nämlich die Punkte A, B, C, D der Figur in gewissem Sinne als Knotenpunkte bezeichnen. Doch dürfen wir nicht etwa

die Strecke von einem dieser Punkte zum nächsten für die halbe Wellenlänge halten. Denn wenn alle elektrischen Bewegungen ihre Richtung bei Ueberschreitung eines jener Punkte umkehrten, so müssten sich die Erscheinungen im secundären Kreise ohne Umkehr wiederholen, da sich die Richtung der Schwingung in der Funkenlänge nicht ausspricht. Vielmehr ist aus diesen Versuchen zu schliessen, dass sich bei Ueberschreitung eines jeden jener Punkte ein Theil der Wirkung umkehre, ein anderer Theil aber nicht. Zulässig ist dagegen die Annahme, dass die doppelte Entfernung jener Punkte der halben Wellenlänge entspreche, sodass diese Punkte das Ende je einer Viertelwellenlänge bezeichnen. In der That kommen wir auf Grund dieser Annahme und der schon ausgesprochenen Grundanschauung zu einer vollständigen Erklärung des Phänomens.

Denken wir uns nämlich, eine Welle verticaler, elektrischer Kraft laufe gegen die Wand, werde mit wenig verminderter Intensität reflectirt und gebe so Anlass zu stehenden Wellen. Wäre die Wand vollkommen leitend, so müsste sich in ihrer Fläche selber ein Knotenpunkt ausbilden. Denn im Innern und an der Grenze eines vollkommenen Leiters kann die elektrische Kraft stets nur verschwindend klein sein. Nun kann unsere Wand nicht als vollkommen leitend gelten. Denn zum Theil ist sie nicht einmal metallisch, und soweit sie metallisch ist, ist sie nicht sehr ausgedehnt. Es wird daher in ihrer Fläche die Kraft noch einen gewissen Werth haben, und zwar im Sinne

der ankommenden Welle. Der Knotenpunkt, welcher sich bei Vorhandensein vollkommener Leitung in der Wand selbst ausbilden würde, muss demnach in Wirklichkeit etwas hinter der Grenze der Wand liegen, etwa im Punkte A unserer Zeichnung. Soll demnach die doppelte Entfernung AB, also die Entfernung AC, der halben Wellenlänge entsprechen, so sind die geometrischen Verhältnisse der stehenden Welle von der Art, wie sie in der üblichen Symbolik durch die ausgezogene Wellenlinie der Figur dargestellt ist. Die Kräfte, welche auf die beiden Seiten des Kreises in den Lagen I, II, III, IV wirken, sind dann nach Grösse und Richtung für einen bestimmten Augenblick richtig durch die beigesetzten Pfeile dargestellt. Ist also in der Nähe eines Knotenpunktes die Funkenstrecke dem Knotenpunkte zugekehrt, so wirkt in dem Kreise eine stärkere Kraft unter günstigen Verhältnissen gegen eine unter ungünstigen Verhältnissen wirkende schwächere Kraft. Ist aber die Funkenstrecke vom Knotenpunkt abgewandt, so wirkt jetzt die stärkere Kraft unter ungünstigen Verhältnissen gegen die nunmehr unter günstigen Verhältnissen wirkende schwächere Kraft. Welche Kraft auch in letzterem Falle das Uebergewicht hat, unter allen Umständen müssen die Funken in letzterem Falle schwächer ausfallen, als in ersterem, und so erklärt sich der Wechsel des Vorzeichens unserer Erscheinung nach jeder Viertelwellenlänge.

Unsere Erklärung giebt selbst die Mittel an die Hand, ihre Richtigkeit weiter zu prüfen. Ist sie richtig, so muss der Wechsel des Vorzeichens im Punkte B und D in ganz anderer Weise erfolgen, als im Punkte C. Die Figur stellt in V, VI, VII den Kreis in diesen Lagen mit den wirkenden Kräften dar, und man ersieht leicht: führen wir in B oder D die Funkenstrecke durch Drehung des Kreises in sich selbst aus der einen in die andere Lage über, so wechselt die Schwingung ihre Richtung relativ zu einer festen Richtung im Kreise, die Funken müssen daher bei dieser Drehung einmal oder eine ungerade Zahl von Malen Null werden. Hingegen wechselt bei gleichem Verfahren in C die Schwingung ihre Richtung nicht, und die Funken müssen also keinmal oder eine gerade Anzahl von Malen verschwinden. Wenn wir nun den Versuch wirklich ausführen, so bemerken wir in der That: In B nimmt die Intensität der Funken ab,

sobald wir die Funkenstrecke aus α entfernen, wird Null im höchsten Punkte und wächst wieder auf ihren Anfangswerth, wenn wir nach β kommen. Aehnlich in D. In C hingegen bleiben bei der Drohung die Funken unverändert bestehen, sie sind eher etwas stärker im höchsten und im tiefsten Punkte, als in den bisher von uns betrachteten. Uebrigens fällt dem Beobachter auch der Umstand auf, dass die Umkehr des Vorzeichens in C bei einer viel kleineren Verschiebung erfolgt, als in B und D, sodass auch in dieser Hinsicht ein Gegensatz der Umkehr in C und derjenigen in B und D hervortritt.

Noch auf eine andere sehr directe Weise können wir das Bild, welches wir von der elektrischen Welle entworfen haben, bestätigen. Stellen wir nämlich jetzt die Ebene unseres Kreises anstatt in die Schwingungsebene in die Wellenebene ein, so ist die elektrische Kraft in allen Theilen des Kreises gleich stark, und bei gleicher Lage der Funken wird die Intensität derselben einfach dieser elektrischen Kraft proportional sein. Die Funken sind nun, wie zu erwarten, in allen Entfernungen Null im höchsten und im tiefsten Punkte des Kreises, im Maximum in den Punkten, welche in einer Horizontalebene mit dem Einfallsloth liegen. In eine der letzteren Lagen bringen wir also die Funkenstrecke und entfernen uns langsam von der Wand. Wir bemerken: Unmittelbar an der leitenden Metallfläche sind keine Funken vorhanden, doch treten schon in sehr kleinem Abstand solche auf; dieselben wachsen schnell und erreichen in B relativ beträchtliche Stärke, um dann wieder abzunehmen. In C sind sie wieder äusserst schwach, wachsen aber wieder bei weiterem Vorschreiten. Ein nochmaliges Abnehmen findet allerdings nicht statt, sondern wegen der wachsenden Annäherung an die primäre Schwingung wachsen auch die Funken dauernd weiter. Würden wir in dem Intervall AD die Stärke der Funken durch eine Curve veranschaulichen, die wir mit positivem und negativem Vorzeichen auftrügen, so würden wir angenähert unmittelbar die gezeichnete Curve erhalten. Vielleicht wären wir daher auch besser von diesem Versuch ausgegangen. Allein in Wirklichkeit ist er nicht so auffallend, wie der erstbeschriebene, und ausserdem erscheint der periodische Wechsel eines Vorzeichens als ein deutlicherer Beweis einer Wellenbewegung als ein periodisches An- und Abschwellen.

Wir sind nunmehr ganz sicher, in A und C Knotenpunkte, in B und D aber Bäuche der elektrischen Welle erkannt zu haben. Im anderen Sinne dürfen wir indess auch B und D als Knotenpunkte bezeichnen. Es sind nämlich diese Punkte die Knoten einer stehenden Welle magnetischer Kraft, welche nach der Theorie die elektrische Welle begleitet und um 1/4 Wellenlänge gegen dieselbe verschoben ist. Durch den Versuch können wir diese Aussage in folgender Weise erläutern. Wir stellen unseren Kreis wieder in die Schwingungsebene ein, bringen aber jetzt die Funkenstrecke in den höchsten Punkt. In dieser Lage vermöchte die elektrische Kraft, wenn sie homogen im ganzen Bereiche des secundären Kreises wäre, keine Funken hervorzurufen. Sie bringt eine Wirkung nur dadurch hervor, dass sie verschieden gross in den verschiedenen Theilen des Kreises ist, und dass ihr um den Kreis genommenes Integral nicht verschwindet. Dies Integral ist proportional der Zahl der magnetischen Kraftlinien, welche durch den Kreis hin und her schwanken. Insofern dürfen wir sagen, dass die Funken in dieser Lage die magnetische Kraft, welche senkrecht auf der Ebene des Kreises steht, messen.1) Wir finden nun aber in dieser Lage in der Nähe der Wand lebhafte Funken, welche schnell abnehmen, in B verschwinden, wieder wachsen bis C, dann wieder abnehmen bis zu einem deutlichen Minimum in D, um bei weiterer Annäherung an die primäre Schwingung dauernd zu wachsen. Tragen wir die Stärke dieser Funken als Ordinaten mit positivem und negativem Vorzeichen auf, so erhalten wir nahezu die punktirte Linie unserer Figur, welche uns dann richtig die magnetische Welle darstellt. Die von uns zuerst beschriebene Erscheinung können wir auch erklären als hervorgehend aus dem Zusammenwirken der elektrischen und der magnetischen Kraft. Erstere kehrt ihr Zeichen um in den Punkten A und C, letztere in den Punkten B und D; in jedem dieser Punkte kehrt also der eine Theil der Wirkung das Zeichen um, während der andere das Zeichen bewahrt; so kehrt demnach die resultirende Wirkung (wie das Product) ihr Zeichen nach jedem jener Punkte um. Selbstredend unterscheidet sich diese Erklärung nicht dem Sinne, sondern nur der Ausdrucksweise nach von der zuerst gegebenen.

^{1) [}Siehe Anmerkung 18 am Schluss des Buches].

Bisher haben wir nur die Erscheinungen in einigen hervorragenden Lagen des Kreises und der Funkenstrecke betrachtet. Die Zahl der Uebergänge zwischen denselben ist in dreifachem Sinne unendlich. Begnügen wir uns deshalb, die Uebergänge zu beschreiben für den Fall, dass die Ebene des Kreises in der Schwingungsebene liegt. In der Nähe der Wand ist der Funke im Maximum auf der Seite der Wand, im Minimum auf der abgekehrten Seite, und bei Drehung des Kreises in sich geht der Funke von dem einen Werth in den anderen über, ohne andere als mittlere Werthe anzunehmen; Nullpunkte finden sich nicht im Kreise. Entfernen wir uns von der Wand, so wird der Funke auf der abgewandten Seite immer schwächer und wird Null in einer Entfernung, welche sich bis auf einige Centimeter ermitteln lässt, nämlich dann, wenn der Mittelpunkt des Kreises 1,08 m von der Wand absteht. Schreiten wir weiter, so treten wieder Funken in der von der Wand abgekehrten Funkenstrecke auf, dieselben sind zunächst immer noch schwächer, als diejenigen auf der Seite der Wand, aber die Stärke der Funken geht nicht einfach durch mittlere Werthe von dem einen auf den anderen Werth über, sondern bei Drehung des Kreises in sich wird der Funke Null einmal in der oberen und einmal in der unteren Hälfte des Kreises. Die beiden Nullpunkte entwickeln sich aus dem einen, welcher sich zuerst gebildet hatte, und entfernen sich immer mehr voneinander, bis sie im Punkte B in den höchsten und den tiefsten Punkt des Kreises fallen. Durch dieses Zeichen kann der Punkt B ziemlich genau bestimmt werden, genauer jedoch durch die weitere Beobachtung der Nullpunkte. Bei weiterem Vorgehen gleiten dieselben jetzt an der der Wand zugekehrten Seite des Kreises hinunter, nähern sich einander und fallen wieder in einer scharf bestimmbaren Entfernung von der Wand in einen Nullpunkt zusammen. Die Entfernung des Mittelpunktes von der Wand beträgt dabei 2,35 m. Genau zwischen diesem und dem erstbeobachteten analogen Punkte, also in 1,72 m Abstand von der Wand muss der Punkt B liegen, was mit der directen Beobachtung bis auf wenige Centimeter stimmt. Schreiten wir weiter gegen C vor, so nähern sich die Funken in allen Punkten des Kreises der Gleichheit, um in C dieselbe zu erreichen. Hinter C beginnt dann das beschriebene Spiel von neuem. In diesem Bereiche finden sich keine Nullpunkte im Kreise. Trotzdem kann die Lage des Punktes C ziemlich genau bestimmt werden, da sich die erstbeschriebenen Erscheinungen in seiner Nähe sehr schnell ändern. In meinen Versuchen lag C 4,10 bis 4,15 m, sagen wir 4,12 m von der Wand ab. Der Punkt D war nicht mehr genau bestimmbar, da hier die Erscheinungen schon ziemlich verwaschen waren, nur soviel konnte gesagt werden, dass derselbe zwischen 6 und 7,5 m Abstand von der Wand hatte. Wegen der Erklärung der beschriebenen Einzelheiten darf ich wohl auf eine vorausgegangene Arbeit¹) verweisen. Die dort angedeuteten mathematischen Entwickelungen liessen sich hier sogar beträchtlich weiter führen. Doch erscheinen die Versuche auch ohne Rechnung verständlich genug.

Die Entfernung zwischen B und C beträgt nach unserer Messung 2,4 m. Nehmen wir diesen Werth als genau an, so liegt der Knotenpunkt A 0,68 m hinter der Wand, der Punkt D 6,52 m vor derselben, was hinlänglich mit der Erfahrung stimmt. Die halbe Wellenlänge beträgt hiernach 4,8 m. Für den gleichen Apparat hatte ich durch eine indirecte Methode die halbe Wellenlänge 4,5 m erhalten. Der Unterschied ist nicht so gross, dass wir nicht in der neuen Messung eine Bestätigung der alten sehen dürften.2) Setzen wir in unsere früheren Messungen 2,9 statt 2,8 m für die Wellenlänge im Draht; 7,1 statt 7,5 m für die Länge der Coincidenz, welches man mit den Beobachtungen noch verträglich finden wird, so erhalten wir aus den alten Beobachtungen den neuen Werth. Uebrigens dürfte vielleicht ein mittlerer Werth der Wahrheit am nächsten kommen, es erscheint mir nicht sehr wahrscheinlich, dass der Knotenpunkt A fast 0,7 m hinter der metallischen Wand liegen sollte. Die Schwingungsdauer unseres Apparates beträgt bei Annahme einer mittleren Wellenlänge und der Lichtgeschwindigkeit für die Geschwindigkeit der Ausbreitung etwa 1,55 Hundertmilliontel Secunde, statt der berechneten 1,4 Hundertmillionteln.

Die Versuche habe ich noch mit einigen Abänderungen ausgeführt. Wenig Neues bot die Abänderung der Entfernung der primären Schwingung von der reflectirenden Wand. Hätte sich

¹⁾ Siehe No. 5. p. 87.

^{9) [}Siehe Anmerkung 19 am Schluss des Buches.]

diese Entfernung beträchtlich vergrössern lassen, so wäre allerdings die deutliche Entwickelung einer zweiten und dritten Wellenlänge zu erwarten gewesen, allein eine solche Vergrösserung liess der Raum nicht zu. Bei Verkleinerung der Entfernung aber verloren die Erscheinungen nur an Interesse, indem von der Seite der primären Schwingung her die Deutlichkeit immer mehr verloren ging, und eine Umkehr des Zeichens nach der anderen verschwand. Wichtiger ist es, die Versuche mit einer Schwingung von anderer Periode zu beschreiben, um zu zeigen, dass die auffallenden Punkte nicht durch die Gestalt der Wand oder des Saales, sondern nur durch die Dimensionen der primären und der secundären Schwingung bestimmt sind. Ich benutzte deshalb zu einigen Versuchen einen secundären Kreis von 17,5 cm Radius und eine primäre Schwingung von gleicher Schwingungsdauer mit diesem Kreis. Die letztere wurde in 8-9 m Abstand von der Wand aufgestellt. Mit so kleinen Apparaten ist indessen schwer arbeiten. Nicht allein sind die Funken ganz ausserordentlich klein, sondern die Erscheinungen der Resonanz etc. sind sehr schwach entwickelt. Ich vermuthe, dass so schnelle Schwingungen schon sehr stark gedämpft sind. Daher waren auch nicht mehr so viel Einzelheiten zu erkennen, wie mit dem grossen Kreise, allein die Haupterscheinung, mit deren Beschreibung wir den Anfang gemacht haben, war auch hier deutlich zu bemerken. In der Nähe der Wand, in 2,5 und in 4,5 m Abstand von derselben lag der stärkere Funken auf der Seite der Wand, in den mittleren Entfernungen von 1,5 und 3,5 m lag der stärkere Funke auf der Seite der primären Schwingung. Ein Wechsel des Vorzeichens fand also nach etwa je 1 m statt, die halbe Wellenlänge betrüge danach hier nur 2 m, und die Schwingung wäre mehr als doppelt so schnell als die erstbenutzte.

Zu den bisherigen Versuchen bemerke ich schliessend, dass es grosser Zurüstungen nicht bedarf, wenn man sich mit mehr oder weniger vollkommenen Andeutungen der Erscheinungen begnügen will. Bei einiger Uebung findet man an jeder Wand Andeutungen von Reflexen. Auch an jeder der oben erwähnten eisernen Säulen kann man auf der Seite der primären Schwingung ganz wohl die Wirkung der reflectirten Welle noch erkennen, wie man auf der entgegengesetzten Seite den elektrodynamischen Schatten wahrnimmt.

Wir wollen nun unsere Versuche nach einer neuen Seite hin entwickeln. Bisher fand sich der secundäre Leiter zwischen der reflectirenden Wand und der primären Schwingung, also in einem Raume, in welchem die directe und die reflectirte Welle in entgegengesetztem Sinne forteilen und durch Interferenz stehende Wellen bilden. Stellen wir umgekehrt die primäre Schwingung zwischen die Wand und den secundären Leiter, so befindet sich der letztere in einem Raume, in welchem directe und reflectirte Welle in gleicher Richtung forteilen. Dieselben müssen sich daselbst zu einer fortschreitenden Welle zusammensetzen, deren Intensität jedoch von der Phasendifferenz der beiden interferirenden Wellen abhängt. Sollen die Erscheinungen auffallend sein, so müssen die beiden Wellen von ähnlicher Intensität sein, es darf deshalb die Entfernung der primären Schwingung von der Wand nicht gross gegen die Dimensionen der Wand, und muss klein gegen den Abstand von der secundären Schwingung sein. Um zu prüfen, ob die betreffenden Erscheinungen in den wirklich darstellbaren Verhältnissen zu beobachten wären, stellte ich die folgenden Versuche an. Der secundäre Kreis wurde jetzt in 14 m Entfernung von der reflectirenden Wand, also in etwa 1 m Entfernung von der Gegenwand aufgestellt. Seine Ebene war parallel der bisherigen Schwingungsebene, seine Funkenstrecke wurde der nahen Wand zugekehrt, sodass die Bedingungen für das Auftreten der Funken in ihm besonders günstig waren. Der primäre Leiter wurde parallel seiner früheren Lage vor der Mitte der leitenden Wand aufgestellt, und zwar zunächst in sehr kleinem Abstande — etwa 30 cm — vor derselben. Die Funken im secundären Kreise waren äusserst schwach, die Funkenstrecke wurde so eingestellt, dass durchaus kein Funken mehr überging. Nun wurde der primäre Leiter schrittweise von der Wand entfernt. Bald zeigten sich einzelne Funken im secundären Leiter, welche in einen ununterbrochenen Funkenstrom übergingen, als der primäre Leiter in 1,5-2 m Abstand von der Wand, also in den Punkt B gelangte. Man möchte dies auf die Abnahme der Entfernung zwischen beiden Leitern schieben. Allein als ich den primären Leiter nun weiter von der Wand entfernte und dadurch dem secundären Leiter weiter näherte, nahmen die Funken dennoch wieder ab, und der Funkenstrom erlosch, als der primäre Leiter nach C gelangte, um erst bei weiterer Annäherung und nunmehr

dauernd zuzunehmen. Eine genaue Messung der Wellenlänge aus diesen Versuchen ist nicht möglich, doch geht schon aus dem Gesagten hervor, dass die bereits erhaltene Wellenlänge den Erscheinungen genügt. Diese Versuche liessen sich auch sehr gut mit den kleineren Apparaten ausführen. Der entsprechende primäre Leiter wurde in 1 m, der secundäre Kreis in 9 m Abstand von der Wand aufgestellt. Die Funken in letzterem waren dann allerdings klein, aber doch gut beobachtbar. Sie erloschen jedoch, wenn der primäre Leiter aus seiner Lage bewegt wurde. sowohl wenn er der Wand, als wenn er dem secundären Leiter genähert wurde. Erst wenn der Abstand von der Wand bis auf 3 m gebracht wurde, traten die Funken wieder auf, um von da ab bei weiterer Annäherung an den secundären Leiter nicht wieder zu verschwinden. Bemerkenswerth ist, dass in demselben Abstande von 2 m sich das Vorhandensein der Wand bei der langsameren Schwingung als vortheilhaft, bei der schnelleren als schädigend für die Ausbreitung der Induction erweist. Es zeigt dies deutlich, dass die Lage der merkwürdigen Punkte durch die Dimensionen der schwingenden Kreise, nicht durch diejenigen der Wand oder des Saales bedingt ist.

Unseren letztbeschriebenen Versuchen entspricht in der Akustik der Versuch, in welchem man zeigt, dass die Annäherung einer Stimmgabel an eine feste Wand den Ton derselben bei gewissen Abständen verstärkt, bei anderen schwächt. In der Optik finden unsere Versuche ihr Analogon in der Lloyd'schen Form des Fresnel'schen Spiegelversuches.¹) In Optik und Akustik gelten jene Versuche als Argumente für die Wellennatur des Lichtes und des Schalles, so werden wir auch die hier beschriebenen Erscheinungen als Argumente für die wellenartige Ausbreitung der Inductionswirkung einer elektrischen Schwingung ansehen dürfen.

Ich habe die Versuche dieses Aufsatzes, wie die ersten Versuche über die Ausbreitung der Induction beschrieben ohne in wesentlichen Punkten Rücksicht zu nehmen auf eine besondere Theorie, wie denn in der That die Beweiskraft der Versuche unabhängig ist von jeder besonderen Theorie. Indessen ist es klar, dass die Versuche ebensoviele Gründe für diejenige Theorie der

 [[]Siehe Anmerkung 20 am Schluss des Buches]. Hertz, Abhandlungen.

elektrodynamischen Erscheinungen sind, welche zuerst von Maxwell auf die Faraday'schen Anschauungen aufgebaut wurde. Es scheint mir, dass auch die an jene Theorie geknüpfte Hypothese über das Wesen des Lichtes sich gegenwärtig dem Geiste mit noch stärkeren Gründen aufdrängt, als dies schon bisher der Fall war. Es ist gewiss ein interessanter Gedanke, dass die Vorgänge im Luftraume, welche wir untersuchten, uns in millionenfacher Vergrösserung dieselben Vorgänge darstellen, welche zwischen den Platten eines Newton'schen Farbenglases oder in der Nähe eines Fresnel'schen Spiegels sich abspielen.

Dass die Maxwell'sche Theorie, trotz aller inneren Wahrscheinlichkeit, der bisherigen Bestätigung und weiterer Bestätigung nicht entbehren kann, wird bewiesen — wenn es anders eines Beweises bedarf — durch die Thatsache, dass die Ausbreitung der elektrischen Wirkung durch gut leitende Drähte nicht mit angenähert gleicher Geschwindigkeit, wie die Ausbreitung durch den Luftraum erfolgt. Bisher ist aus allen Theorien, auch aus der Maxwell'schen, geschlossen worden, dass sich die Elektricität durch Drähte mit Lichtgeschwindigkeit ausbreite. Ueber Versuche, die Ursachen dieses Gegensatzes zwischen Theorie und Erfahrung zu ermitteln, hoffe ich mit der Zeit berichten zu können.1)

^{1) [}Siehe Anmerkung 21 am Schluss des Buches].