Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Der Maschinenbau

Redtenbacher, Ferdinand Mannheim, 1863

Einleitendes

urn:nbn:de:bsz:31-270981

Ofenheizung.

Cinleitendes. Der Ofen ist ein Verbrennungsapparat, welcher in dem Raum aufgestellt wird, welcher erwärmt werden soll. Die Wärme der Verbrennungsgase entweicht durch die Oberfläche des Ofens direkt in die zu erwärmende Luft, und zwar theils durch Ausstrahlung, theils durch Leitung. Die Haupttheile eines Ofens sind das aus Eisenblech, aus Gusseisen oder aus gebrannter Erde bestehende Verbrennungsgehäuse und das Ofenrohr aus Eisenblech, das jedoch zuweilen weggelassen wird. Die Heizung des Ofens geschieht zuweilen von aussen, gewöhnlich aber von innen. Bei einer guten Ofeneinrichtung kommen folgende Theile vor: 1) ein Aschenkasten, der so eingerichtet ist, dass durch denselben mehr oder weniger Luft unter den Rost geleitet werden kann; 2) die durch eine Thüre verschliessbare Einfeuerungsöffnung, durch welche der Brennstoff auf den Rost gebracht wird; 3) eine der Beschaffenheit des Brennstoffes angemessene Rosteinrichtung; zuweilen fehlt der Rost, was aber fehlerhaft ist, indem eine vollständige Verbrennung des Brennstoffes nur bewirkt werden kann, wenn die Luft, welche die Verbrennung bewirkt, nicht oberflächlich über den Brennstoff hinstreicht, sondern von unten herauf durch die Brennstoffmasse getrieben wird; 4) ein Ofenrohr, welches vorzugsweise die Bestimmung hat, dass gleich beim Beginn der Einheizung eine spürbare Erwärmung des Raumes veranlasst wird. Die wesentlichen Bedingungen einer guten Ofeneinrichtung bestehen darin, dass alles in Anwendung gebracht wird, was zu einer sehr vollkommenen Verbrennung des Brennstoffes hinwirkt und dass ferner der Ofen mit Einschluss des Ofenrohrs eine hinreichend grosse Wärmeausstrahlungsoberfläche darbietet. Eine ordentliche Rosteinrichtung mit geeigneter Luftzuführung und genügender Oberfläche zur Wärmeabgabe ist daher das Wesentliche; auch ist das Gegenstromprinzip zu beachten. Eiserne Oefen geben eine rasche Hitze, kühlen den Rauch gut ab, erfordern eine geringe Heizfläche, nehmen ein kleines Volumen ein, kühlen aber sehr rasch ab, so wie das Feuer in denselben erloschen ist, müssen daher, wenn eine gleichförmige, fortdauernde Erwärmung gefordert wird, fort und fort mit kleinen Quantitäten Brennstoff gespeist werden. Eiserne Oefen sind daher in den Fällen geeignet, wenn nicht eine gleichförmige Erwärmung gefordert wird, sondern wenn im Gegentheil nur zu bestimmten Stunden des Tages vorübergehend eine reichliche Erwärmung eintreten soll. Indessen, wenn man diese eisernen Oefen innen dick mit Lehm bestreicht oder bei grösseren Dimensionen mit Backsteinen ausmauert, so nähert sich ihre Wirkung jener der Oefen aus gebrannter Erde. Um die unangenehme Wirkung der heftigen Wärmestrahlung der eisernen Oefen zu beseitigen, ist die Anwendung eines Ofenschirmes oder eines Blechmantels angemessen.

Die Oefen aus gebranntem Thon erwärmen sich langsam, geben aber, wenn einmal die Erwärmung eingetreten ist, eine milde, gleichmässige und nachhaltige Erwärmung, ohne belästigende Ausstrahlung und ohne Geruch zu verursachen, der bei eisernen Oefen durch Verbrennen von Staub entsteht, wenn sie rasch geheizt werden. Diese Thonöfen erfordern aber eine grössere Wärmefläche und nehmen einen grösseren Raum ein. Ein Blechrohr ist bei denselben nothwendig, damit gleich während des Anheizens einige Erwärmung entsteht. Hieraus geht hervor, dass diese Thonöfen den eisernen Oefen vorzuziehen sind, wenn eine andauernde gleichförmige Erwärmung gefordert wird, wie dies insbesondere für Wohnzimmer gewünscht wird. Bei beiden Arten von Oefen ist die innere Heizung der äusseren vorzuziehen, weil die erstere eine reichliche Ventilation verursacht und es auch in der Regel wünschenswerth ist, dass die Nachfeuerung durch die Personen, welche sich im Zimmer aufhalten, geschehen kann. Die äussere Heizung ist jedoch in den Fällen vorzuziehen, wenn es gewünscht wird, dass das Zimmer von dem dienenden Personal nicht betreten wird, und wenn Brennstoff angewendet wird, der einen unangenehmen Geruch verursachen kann, also bei Torfheizung. Auch ist diese äussere Heizung am Platze, wenn eine künstliche Ventilation herbeigeführt wird. Die Einrichtung der Oefen richtet sich auch nach dem Brennstoff, mit welchem geheizt wird. Die Wahl desselben wird im Allgemeinen durch die Preise bestimmt. Wenn der Preisunterschied zwischen Steinkohlen und Holz nicht gross ist, ist die Holzfeuerung wegen ihrer grösseren Reinlichkeit und leichteren Bedienung der Oefen vorzuziehen, eben so auch, wenn nur die Annehmlichkeit, die Kosten aber nicht besonders in Anschlag zu bringen sind.

Alle Ofenheizungen haben die nachtheilige Eigenschaft, dass sich die von dem Ofen ausgehende Wärme nicht gleichförmig durch die Räume verbreitet. Die Strahlung, wie auch die Leitung der Wärme bringen Erwärmungen hervor, bei welchen die Temperatur vom Ofen weg ziemlich rasch abnimmt. Eine gleichförmige Vertheilung der Wärmemenge durch den ganzen Raum kann nur bewirkt werden, wenn eine lebhafte Luftcirkulation herbeigeführt werden kann. Grösere Räume, z. B. Versammlungssäle, Hörsäle

erfordern deshalb die Anwendung mehrerer Oefen.

che de

ded

Ofes

r Rei

able

Ess p

Asig

由地

오십년

验包

通給

创业

PERM

, while

reashf

ofour

Beste

spirber

Belin-

allsi

nen Ver-

)m =

ansstrak-

包抽

Wirm

mprincip blen den

Heines

in da

ge, fort-

kleinen

d daher

armuş timmten

ing ein-

en dick

heigfläche der Wefen. Die Heizfläche eines Ofens besteht aus denjenigen Theilen der Wandungen, welche einerseits im Innern mit den Verbrennungsgasen, andererseits aussen mit der Luft des zu erwärmenden Raumes in Berührung stehen. Bei einem gewissen Volumen des Ofens erhält man durch Anwendung von engen Röhren die grösste Heizfläche. Die Grösse der Heizfläche richtet sich theils nach der Konstruktion des Ofens, nach dem Brennmaterial, insbesondere aber nach dem Material, aus welchem der Ofen besteht. Die gusseisernen Oefen erfordern die kleinste Heizfläche, Oefen aus Eisenblech eine beträchtlich grössere, Thonöfen die grösste Heizfläche. Nach den Erfahrungen von Peclet sind die Wärmemengen, welche Ein Quadratmeter Heizfläche stündlich abgibt, 1) für Oefen aus gebrannter Erde 1600 Wärmeeinheiten, 2) für Oefen aus Gusseisen 4000 Wärmeeinheiten, 3) für Oefen aus Eisenblech 1500 Wärmeeinheiten. Nennt man also w die Wärmemenge, welche stündlich zur Erwärmung eines Raumes erforderlich ist, F die Heizfläche des Ofens in Quadratmetern, so hat man:

a) für Oefen aus gebrannter Erde $F = \frac{W}{1600}$

b) für Oefen aus Gusseisen . . $F = \frac{W}{4000}$

c) für Oefen aus Eisenblech. . $F = \frac{W}{1500}$

Die Anwendung dieser Regel mag durch folgende Beispiele erklärt werden.

1) Es soll eine Ofenheizung für ein Studirzimmer angeordnet werden:

Nicht nur die Umfassungsmauern, auch Boden und Decke sollen Wärmeverluste verursachen.

Grösste Temperaturdifferenz an den kältesten Wintertagen . 30° Fläche der Umfassungswände nach Abzug der Fensterfläche 794m Fläche der Decke und des Bodens 504m

Wärmeverlust durch Decke und Boden:

 $1.2 \times 30 \times 50 \times 0.225$. . , 403 Wärmeeinheiten

Wärmeverlust durch die Umfangsflächen:

 $1.2 \times 30 \times 79 \times 1.16$. . . 2232 Wärmeverlust durch die Fensterfläche:

1.5×30×4.8×3.66 . . . 635

Summe der Verluste . . . 3267 Wärmeeinheiten