Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Der Maschinenbau

Redtenbacher, Ferdinand Mannheim, 1863

Das Güterverhältnis Nn/Na

urn:nbn:de:bsz:31-270981

Regeln zur Bestimmung der Dimensionen von neu zu erbauenden Jonval'schen Curbinen.

Das Güteverhältniß $\frac{N_n}{N_a}$. Wenn es möglich wäre, den sämmtlichen Voraussetzungen, auf welchen die frühere Rechnung basirt war, so wie auch den durch die Rechnung selbst aufgefundenen Bedingungen des absolut besten Effektes zu entsprechen, müsste der Nutzeffekt einer Turbine gleich werden dem absoluten Effekt einer Wasserkraft. Allein dies ist niemals und ist insbesondere bei extravaganten Gefällen nie möglich, denn die Störungen könnten nur dann vermieden werden, wenn jedes Wasseratom in einem besonderen Kanalsystem durch die Maschine geführt werden könnte, und zwar ohne Reibung an den Kanalflächen. Der Nutzeffekt fällt daher stets kleiner aus, als der absolute Effekt, und es ist ganz unmöglich, das Verhältniss dieser Effekte mit voller Genauigkeit zu bestimmen, weil die mancherlei zufälligen Störungen nicht in Rechnung gebracht werden können. In dem grösseren Werke ist zwar eine genauere Berechnung dieses Effektverhältnisses aufgestellt; ganz verlässlich ist sie aber auch nicht. Für die Bestimmung der Dimensionen einer Turbine ist es genug, dieses Verhältniss annähernd zu kennen und in Rechnung zu bringen, und hierzu dienen die Messungen, welche mit gut ausgeführten Jonval'schen Turbinen vorgenommen wurden. Nach diesen Messungen darf man annehmen, dass eine gut ausgeführte Turbine wenigstens 65 Prozent und im günstigsten Fall 75 Prozent von dem absoluten Effekt der Wasserkraft nutzbringend macht. In den meisten Fällen darf man 70 Prozent in Rechnung bringen. Darf man also setzen:

Die Wassermenge Q. Setzen wir in die Formel (1) fün N_a seinen Werth $\frac{1000~Q~H}{75}$, so findet man aus derselben:

$$Q = \frac{75}{700} \frac{N_n}{H} = 0.107 \frac{N_n}{H} \dots \dots \dots (2)$$

Nun kommt es darauf an, ob der Wasserlauf zu allen Zeiten eine Wassermenge liefert, die so gross ist, als diejenige, welche die Formel (2) verlangt. Dies erfordert vielfältige Wassermessungen zu