Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Der Maschinenbau

Redtenbacher, Ferdinand Mannheim, 1863

Luftgehalt der Zellen

urn:nbn:de:bsz:31-270981

Das vierte Glied fällt bei Schaufelrädern immer kleiner aus, als bei Zellenrädern, wodurch der Nachtheil der Zellentiefe wiederum theilweise compensirt wird, aber nur theilweise, denn die Differenz \overline{n} \overline{p} $-\overline{o}$ \overline{p} = \overline{n} \overline{o} fällt bei Schaufelrädern negativ aus, während sie bei Zellenrädern positiv ist.

Bei stark gefüllten Rädern liegt der Schwerpunkt der in den Zellen enthaltenen Wassermasse immer höher, als bei schwach gefüllten; eine starke Füllung ist daher hinsichtlich des Verlustes, der

durch den stossweisen Eintritt entsteht, vortheilhaft.

Im Allgemeinen fällt das Verhältniss zwischen diesem Gefällsverlust und dem totalen Gefälle, mithin auch das Verhältniss zwischen dem Effektverlust und dem absoluten Effekte bei kleineren Gefällen grösser aus, als bei grösseren Gefällen. Die Umstände, welche den Effektverlust des Eintritts vermindern, müssen daher vorzugsweise beachtet werden, wenn kleine Gefälle möglichst vortheilhaft benutzt werden sollen.

fuftgehalt der Bellen. Bei den Rädern, die am innern Umfange keinen Radboden haben, verdrängt das am äusseren Umfang eintretende Wasser, ohne einem merklichen Widerstande zu begegnen, die in den Schaufeln oder Zellenräumen enthaltene Luft und diese entweicht dann nach dem Innern des Rades. Bei den Rädern dagegen, die einen den innern Umfang ganz verschliessenden Boden haben, gibt es für die Luft keinen anderen Ausgang, als die äusseren Oeffnungen der Schaufel- oder Zellenräume, durch welche das Wasser eintritt, und wenn diese Oeffnungen durch das eintretende Wasser verschlossen werden, kann die Luft gar nicht mehr entweichen, sie wird daher, so wie sich die Zelle mehr und mehr füllt, comprimirt, wirkt auf das einströmende Wasser zurück, indem es seine Eintrittsgeschwindigkeit vermindert, oder es gar durch die Eintrittsöffnungen zurückdrängt, und dadurch können beträchtliche Effektverluste entstehen.

Die Figur 1, Tafel VI. zeigt, dass bei den Rädern mit Gerinnen die Absperrung durch den Strahl immer in dem Augenblicke beginnt, wenn eine Schaufel- oder Zellenkante a dem Strahl begegnet, und so lange fortdauert, bis die Kante durch den Strahl gegangen ist. Die Dauer der Absperrung richtet sich also nach der Dicke des Strahls und nach der Geschwindigkeit des Radumfanges. Die Stärke der Compression richtet sich theils nach der Dauer der Absperrung (weil von dieser die Wassermenge abhängt, welche die Compression bewirkt), theils nach dem Volumen eines Schaufeloder Zellenraumes. Ist der Strahl dünne und die Geschwindigkeit

किंदी के

Wass

might

如此

rindgies

eich Nol

absolute

des lui

50 gras.

nn giri

m Spingl

der lie

Je klein

1005 OE

wird dr

iner vii

g bei in

TOD SEE

n beter

1 - is

Wasser

fire

sind, as

es Rade

THESE

ules at

ei ober

doch m

bei den

rand, da

t

des Rades, so wie auch der Schaufelraum gross, so wird die Luft nur wenig comprimirt. Ist dagegen der Strahl dick und ist die Gesehwindigkeit des Rades und der Schaufelraum klein, so wird die Luft stark comprimirt. Diese für den Eintritt des Wassers sehr hinderliche Compression der Luft kann bei den Rädern die ein Gerinne haben, fast ganz vermieden werden, wenn man für jeden Zellen- oder Schaufelraum nach der Breite des Rades hin eine Spalte be Fig. 1, Tafel VI., von 2 bis 3 Centimeter Höhe anbringt und dadurch der Luft einen Ausweg verschafft. Man nennt dies: das Rad ventiliren.

Oberschlächtige Räder können nicht ventilirt werden, es muss also dafür gesorgt werden, dass die Luft durch die äusseren Zellenmündungen entweichen kann, während durch dieselben das Wasser eintritt. Dies verursacht viele Schwierigkeiten, die jedoch gehoben werden können, wenn die Dicke des Wasserstrahls bedeutend kleiner genommen wird, als die Schluckweite (Weite der Zellenmündung) und wenn das Wasser so in die Zelle geleitet wird, dass die relative Bahn der Wassertheilchen gegen das Rad mit der Krümmung der äusseren Zellenwand übereinstimmt. Sind diese Bedingungen erfüllt, so wird während der Füllung einer Zelle zuerst unterhalb des Strahles, sodann oberhalb und unterhalb desselben, und zuletzt oberhalb ein freier Raum für das Entweichen der Luft vorhanden sein.

Der Nachtheil, welcher entsteht, wenn durch die Luft der Eintritt des Wassers erschwert oder verhindert wird, ist bei den oberschlächtigen Rädern noch bedeutender, als bei den übrigen, denn bei den letzteren kann zwar die Stosswirkung sehr geschwächt werden, es kann aber doch kein Wasserverlust eintreten. Bei den oberschlächtigen Rädern dagegen kann das Wasser, nachdem es bis zu einer gewissen Tiefe eingetreten ist, durch die comprimirte Luft wieder zurückgetrieben und selbst aus dem Rad hinausgeschleudert werden, somit für die Wirkung auf das Rad ganz verloren gehen. Diese Erscheinung kann man bei der Mehrzahl von den bestehenden oberschlächtigen Rädern beobachten.

Austritt des Wasser Bei allen Rädern ohne Ausnahme soll das Wasser ohne Geschwindigkeit das Rad verlassen, und die Punkte, in welchen die einzelnen Theilchen austreten, sollen nicht über dem Spiegel des Unterwassers liegen. Die Wahrheit dieses Grundsatzes ist leicht zu begreifen. Hat nämlich das Wasser im Moment seines Austrittes eine gewisse Geschwindigkeit, so besitzt es noch eine gewisse lebendige Kraft, die für die Wirkung auf das Rad verloren