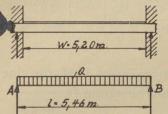
Badische Landesbibliothek Karlsruhe

Digitale Sammlung der Badischen Landesbibliothek Karlsruhe

Berechnungsbeispiele

<u>urn:nbn:de:bsz:31-335013</u>


Berechnungsbeispiele

(Alle Ausrechnungen erfolgten mit dem Rechenschieber und sind daher nur annahernd genau.)

1. Berechnung eines Balfens auf Biegung und Durchbiegung

Sin frei austliegender Balken einer Holzbalkendede über einer Raumtite von $w={f 5},\!20~{
m m}$ ist zu berechnen. Der Balkenabstand beträgt: ${f =0},\!80~{
m m}.$

Stütweite $l = w + \frac{1}{2} \cdot 2 a = 5,46 \text{ m}$.

 $A = B = 895 \, \text{kg}$

a) Berechnung auf Biegung

$$\max M = \frac{1}{8} \cdot Q \cdot l = 0,125 \cdot 1790 \cdot 5,46 = 1220 \text{ kg/m}$$

ohne Berücksichtigung ber zulässigen Durchbiegung würde ein Balken von $14/24~{
m cm}$ [] mit $W=1344~{
m cm}^3$ genügen.

$$\sigma_{P} = \frac{122000}{1344} = 90.5 \; \mathrm{kg/cm^2} \; (\sigma_{P} \; \mathrm{zul} = 90 \; \mathrm{kg/cm^2})$$

b) Berechnung auf Durchbiegung

Die zulässige Durchbiegung ist abhängig von der Art des Tragbaltens und seiner Wichtigkeit (siehe DIN 1052, V. § 15).

Angenommen: zulässige Durchbiegung $f \leq \frac{1}{300} l$.

Dann ist nach der Tabelle auf Seite 157 J erf. = 3,13 \cdot 1220 \cdot 5,46 = 20850 cm⁴

Gewählt 18/24 cm []] mit $J = 20736 \text{ cm}^4$ und $W = 1728 \text{ cm}^3$.

 $f = \frac{1}{384}$

ober be

DAX O

2. Bem

nach

Ein

Rnid

Gem

Anid

(OK 7

3, Bei

arti

Ein neber

31

Die Durchbiegung beträgt:

$$f = \frac{5 \cdot Q \cdot l^3}{384 \cdot EJ} = \frac{5 \cdot 1790 \cdot 546^3}{384 \cdot 100000 \cdot 20736} = 1,83 \text{ cm}$$

oder bezogen auf die Stupmeite ?

$$\frac{f}{l} = \frac{1,83}{546} = \frac{1}{298}$$
 derfelben

max
$$\sigma_b = \frac{M}{W} = \frac{122000}{1728} = 70.6 \text{ kg/cm}^2.$$

2. Bemeffung eines Drudftabes bei mittigem Rraftangrif nach dem w=Berfahren.

Eine Solgftupe (Nadelholg) erhalt burch einen Unterzug eine IB lastung von $S = -20000 \,\mathrm{kg}$.

Rnidlänge der Stüpe:
$$S_{K_1} = 3,50 \,\mathrm{m}$$

Gewählt
$$22/22~\mathrm{cm}$$
 [] mit $J=19521~\mathrm{cm}^4$ und $F=484~\mathrm{cm}^2$

Trägheitsradius
$$i=\sqrt{\frac{J}{F}}=0.289\cdot b=0.289\cdot 22=6.35~\mathrm{cm}$$

Schlankheitsgrad
$$\lambda = \frac{S_K}{i} = \frac{350}{6,35} = 55$$

Knidzahl
$$\omega =$$
 nach DIN 1052, Tafel 3 = 1,76

Anidipannung
$$\sigma_K = \frac{\omega \cdot S}{F} = \frac{1,76 \cdot 20000}{484} = 72,7 \text{ kg/cm}^2$$

$$(\sigma \kappa zul = 80 \text{ kg/cm}^2).$$

3. Berechnung eines verdübelten Balfens mit verschieden= artiger Belaftung.

Ein freiauflagernder Balten von 6,40 m Stupweite erhalt nach nebenstehender Figur folgende Belaftungen:

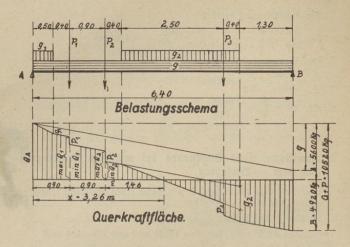
$$G = 4600 \text{ kg}$$

$$G_1 = 600 \text{ kg}$$

$$G_2 = 2320 \text{ kg}$$

$$P_1 = 800 \text{ kg}$$
 $P_2 = 1000 \text{ kg}$
 $P_3 = 1200 \text{ kg}$

Zusammen: 10520 kg


ed daher our

urchbiegun einer Rauntand betrigt:

o 1 m² be-

2000 kg/m³

=1790 kg

Die Auflagerreaktionen betragen :

$$A = 2300 + \frac{1}{6,40} (600 \cdot 6,15 + 2320 \cdot 2,75 + 800$$

$$5,50 + 1000 \cdot 4,60 + 1200 \cdot 1,70 = 5600 \text{ kg}$$

$$B = 10520 - 5600 = 4920 \text{ kg}$$

Die gleichmäßig verteilte Last " G^* belastet den Träger auf die Längeneinheit (1,00 m) mit $g=\frac{1}{6,40}\cdot 4600=720~{
m kg}.$

Die Last von " G_2 " auf die Längeneinheit beträgt $g_2=rac{1}{2_190}\,\cdot 2320=800~{
m kg}$

Der gefährliche Querichnitt liegt

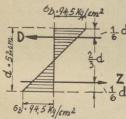
$$\begin{split} X = & \frac{1}{720 + 800} \left(5600 - 600 - 800 - 1000 - 2,20 \cdot 720 \right) \\ & + 2,20 = 3,26 \text{ m boll } A \end{split}$$

 $\max M = 5600 \cdot 3,26 - 600 \cdot 3,01 - 800 \cdot 2,36 - 1000 \cdot 1,46 - 2,20 \cdot 720 \cdot 2,16 - 1,06 \cdot (720 + 800) \cdot 0,53 = 8830 \text{ kg/m}.$

") Bei p

bei 2

bei 3


Gewählt verdübelter Balken' 2 · 26/26 cm [] nach nebenstehendem Querschnitt mit

$$W = \frac{1}{6} \cdot 26 \cdot 52^{3} = 11670 \text{ g cm}^{3}$$
unb $W_{n} = 0.8 \text{ s}^{3}) \cdot 11670 = 9360 \text{ cm}^{3}$

$$\sigma_{b} = \frac{883000}{9360} = 94.5 \text{ kg/cm}^{2}$$

$$(\sigma_{b} \text{ zul} = 100 \text{ kg/cm}^{2})$$

Bur Berbindung der beiden Solzer 26/26 cm []] follen Bierkant-

Dübelanzahl:

Die gesamte — von jeder Trägerhälfte aufzunehmende — Schubkraft beträgt:

$$Q_s = D = Z = rac{\max M}{rac{2}{3}d} = \sigma_b \cdot rac{1}{4}h \cdot b$$
 \mathbf{Z}
 \mathbf{d}
 \mathbf{d}
 \mathbf{d}
 $= rac{883000}{rac{2}{3} \cdot 52} = 0,8 \cdot 94,5 \cdot rac{1}{4} \cdot 52 \cdot 26 \cong 25500 \text{ kg}$

Gewählt für jede Trägerhälfte 9 Stüd Hartholzdübel 6/10 cm [] — 26 cm lang. Die Druckspannung an der Leibungsfläche beträgt:

 $\sigma = \frac{25000}{9 \cdot 3 \cdot 26} = 36.5 \text{ kg/cm}^2$ $(\sigma \text{ zul} = 40 \text{ kg/cm}^2)$

und die Scherspannung im Dübel

$$\tau = \frac{25500}{9 \cdot 10 \cdot 26} = \sim 10.9 \text{ kg/cm}^2$$

 $(\tau_{\text{zul}} = 20 \text{ kg/cm}^2)$

Dübeleinteilung:

Rach Auftragung ber Querfraftsiche ergeben fich bie größten Schubfrafte in ber linksfeitigen Baltenhälfte.

Die Schubspannung beträgt beim rechtedigen Querschnitt in ber mittleren Balfenzone $\tau=1,5\cdot \frac{Q}{F}$.

Hierin bedeutet $Q=\mathfrak{B}$ alkenquerkraft in kg und $F=\mathfrak{B}$ alkenquerschnitt in $\mathrm{cm}^2=26\cdot 52=1352~\mathrm{cm}^2.$

*) Bei verdübelten oder verzahnten Balten ist das Widerstandsmoment zu rechnen bei 2 Lagen = $W_n = 0.8 \cdot W = 0.8 \cdot \frac{1}{6} \cdot b \cdot h^2$ (nach den Bestimmungen der Deutschen Reichsbahn bei 3 Lagen = $W_n = 0.6 \cdot W = 0.6 \cdot \frac{1}{6} \cdot b \cdot h^2$ (BH).


11

x auf die

790)

10 - 1,46 -

kg/m.

u. Verschraubung

zu sprengen

etwas

Die Duerfräfte betragen:

a) am Auflager A $\max Q_A = A = 5600 \text{ kg}$ in 0,50 m von A

 $Q_{g_1} = 5600 - 600 - 0.50 \cdot 720 = 4640 \text{ kg}$ b) im Abstande 0,90 m von A $\max Q_1 = 5600 - 600 - 0.90 \cdot 720 = 4350$ kg

 $\min Q_1 = 4350 - 800 = 3550 \text{ kg}$

c) im Abstande 1,80 m von A $\max Q_2 = 3550 - 0.90 \cdot 720 = 2900 \text{ kg}$ $\min Q_2 = 2900 - 1000 = 1900 \text{ kg}$ in 2,20 m von A

 $Q_{g2} = 1900 - 0.40 \cdot 720 = 1610 \text{ kg}$

Die Schubfräfte betragen:

a) im Balkenteil 0 - 0,90 m von A $Q_m = \frac{1}{2} (5600 + 4640) = 5120 \,\mathrm{kg}$ $1/2 (4640 + 4350) = \sim 4500 \text{ kg}$ $\frac{5120}{50} \cdot 50 = 7400 \text{ kg}$ $Q_s = 1.50 \cdot$

$$1,50 \cdot \frac{4500}{52} \cdot 40 = \frac{5200 \text{ kg}}{5200 \text{ kg}}$$

zusammen 12600 kg

erforderliche Dübelschublange: 12600 = 44,5 cm = 4,45 Diibel. 10,9 - 26

b) im Balkenteil 0,90 - 1,80 m von A $Q_{m_1} = \frac{1}{2} \cdot (3550 + 2900) \simeq 3230 \text{ kg}$ $Q_{s_1} = 1,50 \cdot \frac{3230}{52} \cdot 90 = 8400 \,\mathrm{kg}$ erforderliche Dübelfcublange:

10,9 · 26 = 29,6 cm = 2,96 Dübel.

im Balfenteil 1,80 - 3,26 von A. $Q_{m_2} = \frac{1}{2} \cdot (1900 + 1610) = 1755 \text{ kg}$ $\frac{1}{2} \cdot 1610$ =805 kg $Q_{82} = 1,50 \cdot \frac{1755}{52} \cdot 40 = 2040 \,\mathrm{kg}$ $1,50 \cdot \frac{805}{52} \cdot 106 = 2460 \,\mathrm{kg}$

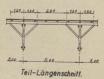
zusammen 4500 kg

erforderliche Dübelichublange:

10,9 · 26 = 15,9 cm = 1,59 Dübel

 $\Sigma Q_s = 12600 + 8400 + 4500 = 25560 \text{ kg}$ Σ Dübel = 4,45 + 2,96 + 1,59 = 9 Stüd.

4. Bet


Stil

Die Dübelanordnung für die rechtsseitige Balkenhälfte wird gleich der linksseitigen gewählt. Aus praktischen Gründen werden für jede Balkenhälfte 10 Hartholzdübel — also insgesamt 20 Hartholzdübel 6/10 cm [] vorgesehen.

4. Berechnung eines freitragenden Daches von 16,00 m Stütweite.

Das Dach wird mit doppelter Pappe abgedeckt. Die Dachneigung beträgt $\sim 7^{\circ}$, der Binderabstand $= 5{,}00~\mathrm{m}$. Die vorgesehene Gestaltung zeigt nebenstehendes Bild.

Pos. 1, Sparren. l = 4.00 m.

Die Eigenlast des Daches beträgt nach DIN 1055 — Blatt 2, $\Re r.~83=50~{
m kg/m^2}.$

Belaftung für 1 m2 Grundfläche:

$$\text{ {\it Eigenlast}} = \frac{1}{\cos 7^0} \cdot 50 = \sim 51 \; \text{kg/m^2}$$

Schnee
$$=$$
 $75 \, \mathrm{kg/m^2}$ Wind $= \sin^2 70 \cdot 125$ $= \sim \frac{2 \, \mathrm{kg/m^2}}{2 \, \mathrm{kg/m^2}}$

zusammen 128 kg/m²

$$Q = 4,00 \cdot 1,00 \cdot 130 = 520 \text{ kg}$$

$$\max M = 0.125 \cdot 520 \cdot 4.00 = 260 \text{ kg/m}$$

Gewählt
$$8/14 \text{ cm}$$
 [] mit $W = 261 \text{ cm}^3$

$$\sigma_b = \frac{26000}{261} = \sim 100 \, \text{kg/cm}^2$$

$$(\sigma_{b} zul = 100 \text{ kg/cm}^2)$$

Pos. 2, Pfetten.
$$l = 5,00 - 2 \cdot 1,20$$
*) = 2,60 m

Dachlast nach Pos. 1
$$= 130 \, {\rm kg/m^2}$$
 Sigenlast von Psetten und Kopsbändern $= 5 \, {\rm kg/m^2}$

50 kg

0 = 9900 kg

5190 kg

on A 130 kg

96 Dübel.

1755 kg

805 kg

10 = 2040 kg

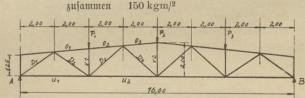
106 = 948) 22

immen 4500 kg

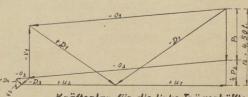
= 25560 kg

= 9 Stid.

^{*) 2 · 1,20 = 2,40} m = Abzug der beiden Kopfbander.


 $Q = 2,60 \cdot 4,00 \cdot 135 = \sim 1400 \text{ kg}$ $\max M = 0,125 \cdot 1400 \cdot 2,60 = 455 \text{ kg/m}$ Genühlt 10/18 cm []] mit $W = 540 \text{ cm}^3$ $\sigma_b = \frac{45500}{540} = 84,5 \text{ kg/cm}^2$

Die Trauspsetten liegen auf den Bänden und werden gewählt = 10/10 cm [].


Pos. 3. Kopfbänder. l = 1,70 m $Q = \frac{1}{2}(1,20 + 2,60) \cdot 4,00 \cdot 135 = 1030 \text{ kg}$ $S = \frac{1}{1,20} \cdot 1030 \cdot 1,70 = -1460 \text{ kg}$ Gemäßt 10/10 cm [] mit $F = 100 \text{ cm}^2$ i = 2,89 cm; $\lambda = \frac{170}{2.89} = 59$; $\omega = 1,85$

 $\sigma_d = \frac{1,85 \cdot 1460}{100} = 27 \text{ kg/cm}^2$

Pos. 4. Dachbinder. $-l=16,00~\mathrm{m}$ Dachlast nach Pos. $2=135~\mathrm{kg/m^2}$ Bindereigenlast $=15~\mathrm{kg/m^2}$

System 1:100.

Kräfteplan für die linke Trägerhälfte. 1cm=1ton --Druck + «Zug. A=

und !

ma: (o_{d z})

max

MSX

62 ZU

Anotenlaften:

$$\begin{array}{l} P_1 = P_2 = P_3 = 4,\!00 \cdot 5,\!00 \cdot 150 = 3000 \, \mathrm{kg} \\ A = B = 1^1 \! /_2 \cdot 3000 = 4500 \, \mathrm{kg}. \end{array}$$

(Die Untersuchung der Binder auf wechselnde, einseitige Schneeund Bindlaft erubrigt fich im allgemeinen, wenn die mittleren Füllftabe (Diagonale und Bertifale) auf Bug und Druck angeichlossen werden).

Bestimmung der Stabquerschnitte:

Obergurt. Stab O1 bis O3.

$$l = 2,00 \text{ m bezw. } L = 4,00 \text{ m}$$

$$\max P = -12,35 \text{ t}$$

$$\text{Genühlt } 2 \cdot 8/18 \text{ cm} \text{ [] mit } F = 288 \text{ cm}_2$$

$$J_x = \frac{1}{12} \cdot 16 \cdot 18^3 = 7776 \text{ cm}^4$$

$$J_y = \frac{1}{12} \cdot 18 \cdot (28^3 - 12^3) = 30336 \text{ cm}^4$$

$$l=2,00~\mathrm{m}$$
 bezw. $L=4,00~\mathrm{m}$ max $P=-12,35~t$

Gewählt
$$2 \cdot 8/18$$
 cm [] mit $F = 288$ cm $_2$

$$J_x = \frac{1}{12} \cdot 16 \cdot 18^3 = 7776 \text{ cm}^4$$

$$J_y = \frac{1}{12} \cdot 18 \cdot (28^3 - 12^3) = 30336 \text{ cm}^4$$

$$J_0 = \frac{1}{12} \cdot 18 \cdot 16^3 = 6144 \, \text{cm}^4$$

$$J_{\omega} = 6144 + \frac{1}{4}(30336 - 6144) = 12192 \text{ cm}^4$$

für
$$l=2,00~\mathrm{m}$$

für
$$l=2{,}00\,\mathrm{m}$$
 für $L=4{,}00\,\mathrm{m}$ $i_x=0{,}289\cdot 18=5{,}2\,\mathrm{cm}$ $i_y=\sqrt{\frac{12192}{288}}=6{,}5\,\mathrm{cm}$

$$\lambda_x = \frac{200}{5.9} = 38.5$$

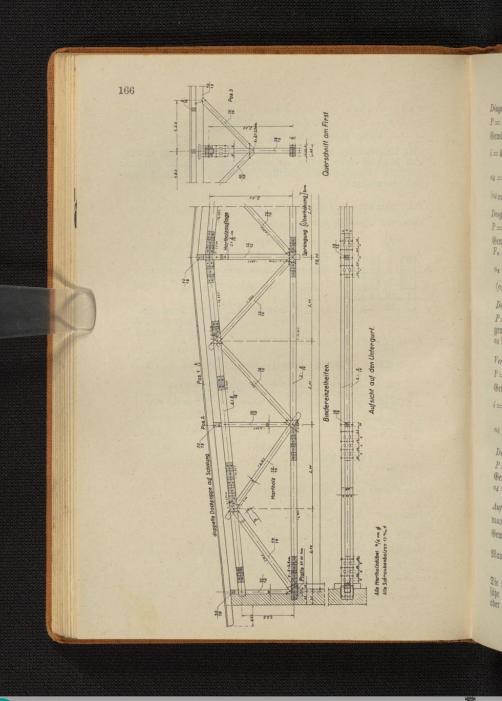
$$\lambda_x = 0.289 \cdot 18 = 5.2 \text{ cm}$$
 $\lambda_y = \frac{400}{5.2} = 38.5$
 $\lambda_y = \frac{400}{6.5} = 61.5$
 $\lambda_y = \frac{400}{6.5} = 61.5$

$$\max \omega = 1,91$$

$$\max c_{d} = \frac{1.91 \cdot 12350}{288} = 82 \text{ kg/cm}^2$$

$$(\sigma a_{\text{Zul}} = 80 + \frac{1}{6} \cdot 80 = 93 \text{ kg/cm}^2)$$

Untergurt. Stab U_1 und U_2 . l = 4,00 m


$$\max P = +11,90 t$$

$$F_n = 0.75 \cdot 224 = 168 \text{ cm}^2$$

$$\max \sigma_z = \frac{11900}{168} = 71 \text{ kg/cm}^2$$

$$(\sigma_z \text{ zul} = 90 \text{ kg/cm}^2)$$

ben gewählt

Diagonale. Stab $D_1 \cdot l = 2.50 \,\mathrm{m}$

P = -7,90 t

Gewählt $14/14 \,\mathrm{cm}$ [] mit $F = 196 \,\mathrm{cm}^2$

Separation 14/14 cm [] into
$$F = 196 \text{ cm}^2$$

 $i = 4,04 \text{ cm}$; $\lambda = \frac{250}{4,04} = 62$; $\omega = 1,92$
 $\sigma_d = \frac{1,92 \cdot 7900}{196} = 77.5 \text{ kg/cm}^2$

$$\sigma_d = \frac{1,92 \cdot 7900}{196} = 77,5 \text{ kg/cm}^2$$

 $(\sigma_{d \text{ zul}} = 80 \text{ kg/cm}^2)$

Desgleichen. Stab D^2 . $l=2.50 \,\mathrm{m}$

P = +6,10 t

Gewählt 12/14 cm [] mit

 $F_n = 0.70 \cdot 168 = \sim 117 \text{ cm}^2$

$$\sigma_{\bar{s}} = \frac{6100}{117} = 52 \text{ kg/cm}^2$$

$$(\sigma_{\text{zul}} = 90 \text{ kg/cm}^2)$$

Desgleichen. Stab D_3 und D_4 . l=2,70 m

P = -0,60 bezw. +0,50 t

gewählt aus praftischen Gründen 12/12 cm [] od bezw. oz = gering.

Vertikale. Stab V_1 . l = 1,65 m

P = -3.00 t

Gewählt $10/12~\mathrm{cm}$ [] mit $F=120~\mathrm{cm}^2$

$$i = 2.89 \text{ cm}; \ \lambda = \frac{165}{2,89} = 57; \ \omega = 1.81$$

$$\sigma_d = \frac{1.81 \cdot 3000}{120} = 45.3 \text{ kg/cm}^2$$

$$\sigma_d = \frac{1,81 \cdot 3000}{120} = 45,3 \text{ kg/cm}^2$$

Desgleichen. Stab V_2 . $l=2,00 \,\mathrm{m}$

P = -0.6 t

Gewählt aus praftischen Gründen 12/12 cm [] mit $F=144~\mathrm{cm}^2$ od = gering.

Auflagerplatte unter A und B

 $\max P = \text{wie vor } A = B = 4500 \text{ kg}$

Gewählt Stahlplatte 20 . 30 . 1 cm

Mauerwerksbeanspruchung: $\sigma_d = \frac{4500}{20.30}$ 7,5 kg/cm²

Die Kraftübertragung an den Knotenpunkten erfolgt durch Verfate und Sartholgdubel. Un Stelle letterer fonnen Rund-Ringoder Einpregdubel Bermendung finden.